Metamath Proof Explorer


Theorem 2zrngALT

Description: The ring of integers restricted to the even integers is a (non-unital) ring, the "ring of even integers". Alternate version of 2zrng , based on a restriction of the field of the complex numbers. The proof is based on the facts that the ring of even integers is an additive abelian group (see 2zrngaabl ) and a multiplicative semigroup (see 2zrngmsgrp ). (Contributed by AV, 11-Feb-2020) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses 2zrng.e 𝐸 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) }
2zrngbas.r 𝑅 = ( ℂflds 𝐸 )
2zrngmmgm.1 𝑀 = ( mulGrp ‘ 𝑅 )
Assertion 2zrngALT 𝑅 ∈ Rng

Proof

Step Hyp Ref Expression
1 2zrng.e 𝐸 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) }
2 2zrngbas.r 𝑅 = ( ℂflds 𝐸 )
3 2zrngmmgm.1 𝑀 = ( mulGrp ‘ 𝑅 )
4 1 2 2zrngaabl 𝑅 ∈ Abel
5 1 2 3 2zrngmsgrp 𝑀 ∈ Smgrp
6 elrabi ( 𝑎 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑎 ∈ ℤ )
7 6 zcnd ( 𝑎 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑎 ∈ ℂ )
8 7 1 eleq2s ( 𝑎𝐸𝑎 ∈ ℂ )
9 elrabi ( 𝑏 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑏 ∈ ℤ )
10 9 zcnd ( 𝑏 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑏 ∈ ℂ )
11 10 1 eleq2s ( 𝑏𝐸𝑏 ∈ ℂ )
12 elrabi ( 𝑦 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑦 ∈ ℤ )
13 12 zcnd ( 𝑦 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑦 ∈ ℂ )
14 13 1 eleq2s ( 𝑦𝐸𝑦 ∈ ℂ )
15 adddi ( ( 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑎 · ( 𝑏 + 𝑦 ) ) = ( ( 𝑎 · 𝑏 ) + ( 𝑎 · 𝑦 ) ) )
16 adddir ( ( 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 𝑎 + 𝑏 ) · 𝑦 ) = ( ( 𝑎 · 𝑦 ) + ( 𝑏 · 𝑦 ) ) )
17 15 16 jca ( ( 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 𝑎 · ( 𝑏 + 𝑦 ) ) = ( ( 𝑎 · 𝑏 ) + ( 𝑎 · 𝑦 ) ) ∧ ( ( 𝑎 + 𝑏 ) · 𝑦 ) = ( ( 𝑎 · 𝑦 ) + ( 𝑏 · 𝑦 ) ) ) )
18 8 11 14 17 syl3an ( ( 𝑎𝐸𝑏𝐸𝑦𝐸 ) → ( ( 𝑎 · ( 𝑏 + 𝑦 ) ) = ( ( 𝑎 · 𝑏 ) + ( 𝑎 · 𝑦 ) ) ∧ ( ( 𝑎 + 𝑏 ) · 𝑦 ) = ( ( 𝑎 · 𝑦 ) + ( 𝑏 · 𝑦 ) ) ) )
19 18 rgen3 𝑎𝐸𝑏𝐸𝑦𝐸 ( ( 𝑎 · ( 𝑏 + 𝑦 ) ) = ( ( 𝑎 · 𝑏 ) + ( 𝑎 · 𝑦 ) ) ∧ ( ( 𝑎 + 𝑏 ) · 𝑦 ) = ( ( 𝑎 · 𝑦 ) + ( 𝑏 · 𝑦 ) ) )
20 1 2 2zrngbas 𝐸 = ( Base ‘ 𝑅 )
21 1 2 2zrngadd + = ( +g𝑅 )
22 1 2 2zrngmul · = ( .r𝑅 )
23 20 3 21 22 isrng ( 𝑅 ∈ Rng ↔ ( 𝑅 ∈ Abel ∧ 𝑀 ∈ Smgrp ∧ ∀ 𝑎𝐸𝑏𝐸𝑦𝐸 ( ( 𝑎 · ( 𝑏 + 𝑦 ) ) = ( ( 𝑎 · 𝑏 ) + ( 𝑎 · 𝑦 ) ) ∧ ( ( 𝑎 + 𝑏 ) · 𝑦 ) = ( ( 𝑎 · 𝑦 ) + ( 𝑏 · 𝑦 ) ) ) ) )
24 4 5 19 23 mpbir3an 𝑅 ∈ Rng