Step |
Hyp |
Ref |
Expression |
1 |
|
2zrng.e |
⊢ 𝐸 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } |
2 |
|
2zrngbas.r |
⊢ 𝑅 = ( ℂfld ↾s 𝐸 ) |
3 |
|
2zrngmmgm.1 |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
4 |
1 2
|
2zrngaabl |
⊢ 𝑅 ∈ Abel |
5 |
1 2 3
|
2zrngmsgrp |
⊢ 𝑀 ∈ Smgrp |
6 |
|
elrabi |
⊢ ( 𝑎 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑎 ∈ ℤ ) |
7 |
6
|
zcnd |
⊢ ( 𝑎 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑎 ∈ ℂ ) |
8 |
7 1
|
eleq2s |
⊢ ( 𝑎 ∈ 𝐸 → 𝑎 ∈ ℂ ) |
9 |
|
elrabi |
⊢ ( 𝑏 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑏 ∈ ℤ ) |
10 |
9
|
zcnd |
⊢ ( 𝑏 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑏 ∈ ℂ ) |
11 |
10 1
|
eleq2s |
⊢ ( 𝑏 ∈ 𝐸 → 𝑏 ∈ ℂ ) |
12 |
|
elrabi |
⊢ ( 𝑦 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑦 ∈ ℤ ) |
13 |
12
|
zcnd |
⊢ ( 𝑦 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑦 ∈ ℂ ) |
14 |
13 1
|
eleq2s |
⊢ ( 𝑦 ∈ 𝐸 → 𝑦 ∈ ℂ ) |
15 |
|
adddi |
⊢ ( ( 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑎 · ( 𝑏 + 𝑦 ) ) = ( ( 𝑎 · 𝑏 ) + ( 𝑎 · 𝑦 ) ) ) |
16 |
|
adddir |
⊢ ( ( 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 𝑎 + 𝑏 ) · 𝑦 ) = ( ( 𝑎 · 𝑦 ) + ( 𝑏 · 𝑦 ) ) ) |
17 |
15 16
|
jca |
⊢ ( ( 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 𝑎 · ( 𝑏 + 𝑦 ) ) = ( ( 𝑎 · 𝑏 ) + ( 𝑎 · 𝑦 ) ) ∧ ( ( 𝑎 + 𝑏 ) · 𝑦 ) = ( ( 𝑎 · 𝑦 ) + ( 𝑏 · 𝑦 ) ) ) ) |
18 |
8 11 14 17
|
syl3an |
⊢ ( ( 𝑎 ∈ 𝐸 ∧ 𝑏 ∈ 𝐸 ∧ 𝑦 ∈ 𝐸 ) → ( ( 𝑎 · ( 𝑏 + 𝑦 ) ) = ( ( 𝑎 · 𝑏 ) + ( 𝑎 · 𝑦 ) ) ∧ ( ( 𝑎 + 𝑏 ) · 𝑦 ) = ( ( 𝑎 · 𝑦 ) + ( 𝑏 · 𝑦 ) ) ) ) |
19 |
18
|
rgen3 |
⊢ ∀ 𝑎 ∈ 𝐸 ∀ 𝑏 ∈ 𝐸 ∀ 𝑦 ∈ 𝐸 ( ( 𝑎 · ( 𝑏 + 𝑦 ) ) = ( ( 𝑎 · 𝑏 ) + ( 𝑎 · 𝑦 ) ) ∧ ( ( 𝑎 + 𝑏 ) · 𝑦 ) = ( ( 𝑎 · 𝑦 ) + ( 𝑏 · 𝑦 ) ) ) |
20 |
1 2
|
2zrngbas |
⊢ 𝐸 = ( Base ‘ 𝑅 ) |
21 |
1 2
|
2zrngadd |
⊢ + = ( +g ‘ 𝑅 ) |
22 |
1 2
|
2zrngmul |
⊢ · = ( .r ‘ 𝑅 ) |
23 |
20 3 21 22
|
isrng |
⊢ ( 𝑅 ∈ Rng ↔ ( 𝑅 ∈ Abel ∧ 𝑀 ∈ Smgrp ∧ ∀ 𝑎 ∈ 𝐸 ∀ 𝑏 ∈ 𝐸 ∀ 𝑦 ∈ 𝐸 ( ( 𝑎 · ( 𝑏 + 𝑦 ) ) = ( ( 𝑎 · 𝑏 ) + ( 𝑎 · 𝑦 ) ) ∧ ( ( 𝑎 + 𝑏 ) · 𝑦 ) = ( ( 𝑎 · 𝑦 ) + ( 𝑏 · 𝑦 ) ) ) ) ) |
24 |
4 5 19 23
|
mpbir3an |
⊢ 𝑅 ∈ Rng |