| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2zrng.e | ⊢ 𝐸  =  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) } | 
						
							| 2 |  | 2zrngbas.r | ⊢ 𝑅  =  ( ℂfld  ↾s  𝐸 ) | 
						
							| 3 |  | 2zrngmmgm.1 | ⊢ 𝑀  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 4 | 1 2 | 2zrngaabl | ⊢ 𝑅  ∈  Abel | 
						
							| 5 | 1 2 3 | 2zrngmsgrp | ⊢ 𝑀  ∈  Smgrp | 
						
							| 6 |  | elrabi | ⊢ ( 𝑎  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) }  →  𝑎  ∈  ℤ ) | 
						
							| 7 | 6 | zcnd | ⊢ ( 𝑎  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) }  →  𝑎  ∈  ℂ ) | 
						
							| 8 | 7 1 | eleq2s | ⊢ ( 𝑎  ∈  𝐸  →  𝑎  ∈  ℂ ) | 
						
							| 9 |  | elrabi | ⊢ ( 𝑏  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) }  →  𝑏  ∈  ℤ ) | 
						
							| 10 | 9 | zcnd | ⊢ ( 𝑏  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) }  →  𝑏  ∈  ℂ ) | 
						
							| 11 | 10 1 | eleq2s | ⊢ ( 𝑏  ∈  𝐸  →  𝑏  ∈  ℂ ) | 
						
							| 12 |  | elrabi | ⊢ ( 𝑦  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) }  →  𝑦  ∈  ℤ ) | 
						
							| 13 | 12 | zcnd | ⊢ ( 𝑦  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) }  →  𝑦  ∈  ℂ ) | 
						
							| 14 | 13 1 | eleq2s | ⊢ ( 𝑦  ∈  𝐸  →  𝑦  ∈  ℂ ) | 
						
							| 15 |  | adddi | ⊢ ( ( 𝑎  ∈  ℂ  ∧  𝑏  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( 𝑎  ·  ( 𝑏  +  𝑦 ) )  =  ( ( 𝑎  ·  𝑏 )  +  ( 𝑎  ·  𝑦 ) ) ) | 
						
							| 16 |  | adddir | ⊢ ( ( 𝑎  ∈  ℂ  ∧  𝑏  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( ( 𝑎  +  𝑏 )  ·  𝑦 )  =  ( ( 𝑎  ·  𝑦 )  +  ( 𝑏  ·  𝑦 ) ) ) | 
						
							| 17 | 15 16 | jca | ⊢ ( ( 𝑎  ∈  ℂ  ∧  𝑏  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( ( 𝑎  ·  ( 𝑏  +  𝑦 ) )  =  ( ( 𝑎  ·  𝑏 )  +  ( 𝑎  ·  𝑦 ) )  ∧  ( ( 𝑎  +  𝑏 )  ·  𝑦 )  =  ( ( 𝑎  ·  𝑦 )  +  ( 𝑏  ·  𝑦 ) ) ) ) | 
						
							| 18 | 8 11 14 17 | syl3an | ⊢ ( ( 𝑎  ∈  𝐸  ∧  𝑏  ∈  𝐸  ∧  𝑦  ∈  𝐸 )  →  ( ( 𝑎  ·  ( 𝑏  +  𝑦 ) )  =  ( ( 𝑎  ·  𝑏 )  +  ( 𝑎  ·  𝑦 ) )  ∧  ( ( 𝑎  +  𝑏 )  ·  𝑦 )  =  ( ( 𝑎  ·  𝑦 )  +  ( 𝑏  ·  𝑦 ) ) ) ) | 
						
							| 19 | 18 | rgen3 | ⊢ ∀ 𝑎  ∈  𝐸 ∀ 𝑏  ∈  𝐸 ∀ 𝑦  ∈  𝐸 ( ( 𝑎  ·  ( 𝑏  +  𝑦 ) )  =  ( ( 𝑎  ·  𝑏 )  +  ( 𝑎  ·  𝑦 ) )  ∧  ( ( 𝑎  +  𝑏 )  ·  𝑦 )  =  ( ( 𝑎  ·  𝑦 )  +  ( 𝑏  ·  𝑦 ) ) ) | 
						
							| 20 | 1 2 | 2zrngbas | ⊢ 𝐸  =  ( Base ‘ 𝑅 ) | 
						
							| 21 | 1 2 | 2zrngadd | ⊢  +   =  ( +g ‘ 𝑅 ) | 
						
							| 22 | 1 2 | 2zrngmul | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 23 | 20 3 21 22 | isrng | ⊢ ( 𝑅  ∈  Rng  ↔  ( 𝑅  ∈  Abel  ∧  𝑀  ∈  Smgrp  ∧  ∀ 𝑎  ∈  𝐸 ∀ 𝑏  ∈  𝐸 ∀ 𝑦  ∈  𝐸 ( ( 𝑎  ·  ( 𝑏  +  𝑦 ) )  =  ( ( 𝑎  ·  𝑏 )  +  ( 𝑎  ·  𝑦 ) )  ∧  ( ( 𝑎  +  𝑏 )  ·  𝑦 )  =  ( ( 𝑎  ·  𝑦 )  +  ( 𝑏  ·  𝑦 ) ) ) ) ) | 
						
							| 24 | 4 5 19 23 | mpbir3an | ⊢ 𝑅  ∈  Rng |