Step |
Hyp |
Ref |
Expression |
1 |
|
2zrng.e |
⊢ 𝐸 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } |
2 |
|
2zrngbas.r |
⊢ 𝑅 = ( ℂfld ↾s 𝐸 ) |
3 |
|
2zrngmmgm.1 |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
4 |
1
|
2even |
⊢ 2 ∈ 𝐸 |
5 |
4
|
a1i |
⊢ ( 𝑏 ∈ 𝐸 → 2 ∈ 𝐸 ) |
6 |
|
oveq2 |
⊢ ( 𝑎 = 2 → ( 𝑏 · 𝑎 ) = ( 𝑏 · 2 ) ) |
7 |
|
id |
⊢ ( 𝑎 = 2 → 𝑎 = 2 ) |
8 |
6 7
|
neeq12d |
⊢ ( 𝑎 = 2 → ( ( 𝑏 · 𝑎 ) ≠ 𝑎 ↔ ( 𝑏 · 2 ) ≠ 2 ) ) |
9 |
8
|
adantl |
⊢ ( ( 𝑏 ∈ 𝐸 ∧ 𝑎 = 2 ) → ( ( 𝑏 · 𝑎 ) ≠ 𝑎 ↔ ( 𝑏 · 2 ) ≠ 2 ) ) |
10 |
|
elrabi |
⊢ ( 𝑏 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑏 ∈ ℤ ) |
11 |
10
|
zcnd |
⊢ ( 𝑏 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑏 ∈ ℂ ) |
12 |
11 1
|
eleq2s |
⊢ ( 𝑏 ∈ 𝐸 → 𝑏 ∈ ℂ ) |
13 |
1
|
1neven |
⊢ 1 ∉ 𝐸 |
14 |
|
elnelne2 |
⊢ ( ( 𝑏 ∈ 𝐸 ∧ 1 ∉ 𝐸 ) → 𝑏 ≠ 1 ) |
15 |
13 14
|
mpan2 |
⊢ ( 𝑏 ∈ 𝐸 → 𝑏 ≠ 1 ) |
16 |
15
|
adantr |
⊢ ( ( 𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ ) → 𝑏 ≠ 1 ) |
17 |
|
simpr |
⊢ ( ( 𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ ) → 𝑏 ∈ ℂ ) |
18 |
|
2cnd |
⊢ ( ( 𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ ) → 2 ∈ ℂ ) |
19 |
|
2ne0 |
⊢ 2 ≠ 0 |
20 |
19
|
a1i |
⊢ ( ( 𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ ) → 2 ≠ 0 ) |
21 |
17 18 20
|
divcan4d |
⊢ ( ( 𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ ) → ( ( 𝑏 · 2 ) / 2 ) = 𝑏 ) |
22 |
|
2cnne0 |
⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) |
23 |
|
divid |
⊢ ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( 2 / 2 ) = 1 ) |
24 |
22 23
|
mp1i |
⊢ ( ( 𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ ) → ( 2 / 2 ) = 1 ) |
25 |
16 21 24
|
3netr4d |
⊢ ( ( 𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ ) → ( ( 𝑏 · 2 ) / 2 ) ≠ ( 2 / 2 ) ) |
26 |
17 18
|
mulcld |
⊢ ( ( 𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ ) → ( 𝑏 · 2 ) ∈ ℂ ) |
27 |
22
|
a1i |
⊢ ( ( 𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ ) → ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) |
28 |
|
div11 |
⊢ ( ( ( 𝑏 · 2 ) ∈ ℂ ∧ 2 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( ( 𝑏 · 2 ) / 2 ) = ( 2 / 2 ) ↔ ( 𝑏 · 2 ) = 2 ) ) |
29 |
26 18 27 28
|
syl3anc |
⊢ ( ( 𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ ) → ( ( ( 𝑏 · 2 ) / 2 ) = ( 2 / 2 ) ↔ ( 𝑏 · 2 ) = 2 ) ) |
30 |
29
|
biimprd |
⊢ ( ( 𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ ) → ( ( 𝑏 · 2 ) = 2 → ( ( 𝑏 · 2 ) / 2 ) = ( 2 / 2 ) ) ) |
31 |
30
|
necon3d |
⊢ ( ( 𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ ) → ( ( ( 𝑏 · 2 ) / 2 ) ≠ ( 2 / 2 ) → ( 𝑏 · 2 ) ≠ 2 ) ) |
32 |
25 31
|
mpd |
⊢ ( ( 𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ ) → ( 𝑏 · 2 ) ≠ 2 ) |
33 |
12 32
|
mpdan |
⊢ ( 𝑏 ∈ 𝐸 → ( 𝑏 · 2 ) ≠ 2 ) |
34 |
5 9 33
|
rspcedvd |
⊢ ( 𝑏 ∈ 𝐸 → ∃ 𝑎 ∈ 𝐸 ( 𝑏 · 𝑎 ) ≠ 𝑎 ) |
35 |
34
|
rgen |
⊢ ∀ 𝑏 ∈ 𝐸 ∃ 𝑎 ∈ 𝐸 ( 𝑏 · 𝑎 ) ≠ 𝑎 |