Metamath Proof Explorer


Theorem 2zrngnmlid

Description: R has no multiplicative (left) identity. (Contributed by AV, 12-Feb-2020)

Ref Expression
Hypotheses 2zrng.e 𝐸 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) }
2zrngbas.r 𝑅 = ( ℂflds 𝐸 )
2zrngmmgm.1 𝑀 = ( mulGrp ‘ 𝑅 )
Assertion 2zrngnmlid 𝑏𝐸𝑎𝐸 ( 𝑏 · 𝑎 ) ≠ 𝑎

Proof

Step Hyp Ref Expression
1 2zrng.e 𝐸 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) }
2 2zrngbas.r 𝑅 = ( ℂflds 𝐸 )
3 2zrngmmgm.1 𝑀 = ( mulGrp ‘ 𝑅 )
4 1 2even 2 ∈ 𝐸
5 4 a1i ( 𝑏𝐸 → 2 ∈ 𝐸 )
6 oveq2 ( 𝑎 = 2 → ( 𝑏 · 𝑎 ) = ( 𝑏 · 2 ) )
7 id ( 𝑎 = 2 → 𝑎 = 2 )
8 6 7 neeq12d ( 𝑎 = 2 → ( ( 𝑏 · 𝑎 ) ≠ 𝑎 ↔ ( 𝑏 · 2 ) ≠ 2 ) )
9 8 adantl ( ( 𝑏𝐸𝑎 = 2 ) → ( ( 𝑏 · 𝑎 ) ≠ 𝑎 ↔ ( 𝑏 · 2 ) ≠ 2 ) )
10 elrabi ( 𝑏 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑏 ∈ ℤ )
11 10 zcnd ( 𝑏 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑏 ∈ ℂ )
12 11 1 eleq2s ( 𝑏𝐸𝑏 ∈ ℂ )
13 1 1neven 1 ∉ 𝐸
14 elnelne2 ( ( 𝑏𝐸 ∧ 1 ∉ 𝐸 ) → 𝑏 ≠ 1 )
15 13 14 mpan2 ( 𝑏𝐸𝑏 ≠ 1 )
16 15 adantr ( ( 𝑏𝐸𝑏 ∈ ℂ ) → 𝑏 ≠ 1 )
17 simpr ( ( 𝑏𝐸𝑏 ∈ ℂ ) → 𝑏 ∈ ℂ )
18 2cnd ( ( 𝑏𝐸𝑏 ∈ ℂ ) → 2 ∈ ℂ )
19 2ne0 2 ≠ 0
20 19 a1i ( ( 𝑏𝐸𝑏 ∈ ℂ ) → 2 ≠ 0 )
21 17 18 20 divcan4d ( ( 𝑏𝐸𝑏 ∈ ℂ ) → ( ( 𝑏 · 2 ) / 2 ) = 𝑏 )
22 2cnne0 ( 2 ∈ ℂ ∧ 2 ≠ 0 )
23 divid ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( 2 / 2 ) = 1 )
24 22 23 mp1i ( ( 𝑏𝐸𝑏 ∈ ℂ ) → ( 2 / 2 ) = 1 )
25 16 21 24 3netr4d ( ( 𝑏𝐸𝑏 ∈ ℂ ) → ( ( 𝑏 · 2 ) / 2 ) ≠ ( 2 / 2 ) )
26 17 18 mulcld ( ( 𝑏𝐸𝑏 ∈ ℂ ) → ( 𝑏 · 2 ) ∈ ℂ )
27 22 a1i ( ( 𝑏𝐸𝑏 ∈ ℂ ) → ( 2 ∈ ℂ ∧ 2 ≠ 0 ) )
28 div11 ( ( ( 𝑏 · 2 ) ∈ ℂ ∧ 2 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( ( 𝑏 · 2 ) / 2 ) = ( 2 / 2 ) ↔ ( 𝑏 · 2 ) = 2 ) )
29 26 18 27 28 syl3anc ( ( 𝑏𝐸𝑏 ∈ ℂ ) → ( ( ( 𝑏 · 2 ) / 2 ) = ( 2 / 2 ) ↔ ( 𝑏 · 2 ) = 2 ) )
30 29 biimprd ( ( 𝑏𝐸𝑏 ∈ ℂ ) → ( ( 𝑏 · 2 ) = 2 → ( ( 𝑏 · 2 ) / 2 ) = ( 2 / 2 ) ) )
31 30 necon3d ( ( 𝑏𝐸𝑏 ∈ ℂ ) → ( ( ( 𝑏 · 2 ) / 2 ) ≠ ( 2 / 2 ) → ( 𝑏 · 2 ) ≠ 2 ) )
32 25 31 mpd ( ( 𝑏𝐸𝑏 ∈ ℂ ) → ( 𝑏 · 2 ) ≠ 2 )
33 12 32 mpdan ( 𝑏𝐸 → ( 𝑏 · 2 ) ≠ 2 )
34 5 9 33 rspcedvd ( 𝑏𝐸 → ∃ 𝑎𝐸 ( 𝑏 · 𝑎 ) ≠ 𝑎 )
35 34 rgen 𝑏𝐸𝑎𝐸 ( 𝑏 · 𝑎 ) ≠ 𝑎