| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2zrng.e | ⊢ 𝐸  =  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) } | 
						
							| 2 |  | 2zrngbas.r | ⊢ 𝑅  =  ( ℂfld  ↾s  𝐸 ) | 
						
							| 3 |  | 2zrngmmgm.1 | ⊢ 𝑀  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 4 | 1 | 2even | ⊢ 2  ∈  𝐸 | 
						
							| 5 | 4 | a1i | ⊢ ( 𝑏  ∈  𝐸  →  2  ∈  𝐸 ) | 
						
							| 6 |  | oveq2 | ⊢ ( 𝑎  =  2  →  ( 𝑏  ·  𝑎 )  =  ( 𝑏  ·  2 ) ) | 
						
							| 7 |  | id | ⊢ ( 𝑎  =  2  →  𝑎  =  2 ) | 
						
							| 8 | 6 7 | neeq12d | ⊢ ( 𝑎  =  2  →  ( ( 𝑏  ·  𝑎 )  ≠  𝑎  ↔  ( 𝑏  ·  2 )  ≠  2 ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝑏  ∈  𝐸  ∧  𝑎  =  2 )  →  ( ( 𝑏  ·  𝑎 )  ≠  𝑎  ↔  ( 𝑏  ·  2 )  ≠  2 ) ) | 
						
							| 10 |  | elrabi | ⊢ ( 𝑏  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) }  →  𝑏  ∈  ℤ ) | 
						
							| 11 | 10 | zcnd | ⊢ ( 𝑏  ∈  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) }  →  𝑏  ∈  ℂ ) | 
						
							| 12 | 11 1 | eleq2s | ⊢ ( 𝑏  ∈  𝐸  →  𝑏  ∈  ℂ ) | 
						
							| 13 | 1 | 1neven | ⊢ 1  ∉  𝐸 | 
						
							| 14 |  | elnelne2 | ⊢ ( ( 𝑏  ∈  𝐸  ∧  1  ∉  𝐸 )  →  𝑏  ≠  1 ) | 
						
							| 15 | 13 14 | mpan2 | ⊢ ( 𝑏  ∈  𝐸  →  𝑏  ≠  1 ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝑏  ∈  𝐸  ∧  𝑏  ∈  ℂ )  →  𝑏  ≠  1 ) | 
						
							| 17 |  | simpr | ⊢ ( ( 𝑏  ∈  𝐸  ∧  𝑏  ∈  ℂ )  →  𝑏  ∈  ℂ ) | 
						
							| 18 |  | 2cnd | ⊢ ( ( 𝑏  ∈  𝐸  ∧  𝑏  ∈  ℂ )  →  2  ∈  ℂ ) | 
						
							| 19 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 20 | 19 | a1i | ⊢ ( ( 𝑏  ∈  𝐸  ∧  𝑏  ∈  ℂ )  →  2  ≠  0 ) | 
						
							| 21 | 17 18 20 | divcan4d | ⊢ ( ( 𝑏  ∈  𝐸  ∧  𝑏  ∈  ℂ )  →  ( ( 𝑏  ·  2 )  /  2 )  =  𝑏 ) | 
						
							| 22 |  | 2cnne0 | ⊢ ( 2  ∈  ℂ  ∧  2  ≠  0 ) | 
						
							| 23 |  | divid | ⊢ ( ( 2  ∈  ℂ  ∧  2  ≠  0 )  →  ( 2  /  2 )  =  1 ) | 
						
							| 24 | 22 23 | mp1i | ⊢ ( ( 𝑏  ∈  𝐸  ∧  𝑏  ∈  ℂ )  →  ( 2  /  2 )  =  1 ) | 
						
							| 25 | 16 21 24 | 3netr4d | ⊢ ( ( 𝑏  ∈  𝐸  ∧  𝑏  ∈  ℂ )  →  ( ( 𝑏  ·  2 )  /  2 )  ≠  ( 2  /  2 ) ) | 
						
							| 26 | 17 18 | mulcld | ⊢ ( ( 𝑏  ∈  𝐸  ∧  𝑏  ∈  ℂ )  →  ( 𝑏  ·  2 )  ∈  ℂ ) | 
						
							| 27 | 22 | a1i | ⊢ ( ( 𝑏  ∈  𝐸  ∧  𝑏  ∈  ℂ )  →  ( 2  ∈  ℂ  ∧  2  ≠  0 ) ) | 
						
							| 28 |  | div11 | ⊢ ( ( ( 𝑏  ·  2 )  ∈  ℂ  ∧  2  ∈  ℂ  ∧  ( 2  ∈  ℂ  ∧  2  ≠  0 ) )  →  ( ( ( 𝑏  ·  2 )  /  2 )  =  ( 2  /  2 )  ↔  ( 𝑏  ·  2 )  =  2 ) ) | 
						
							| 29 | 26 18 27 28 | syl3anc | ⊢ ( ( 𝑏  ∈  𝐸  ∧  𝑏  ∈  ℂ )  →  ( ( ( 𝑏  ·  2 )  /  2 )  =  ( 2  /  2 )  ↔  ( 𝑏  ·  2 )  =  2 ) ) | 
						
							| 30 | 29 | biimprd | ⊢ ( ( 𝑏  ∈  𝐸  ∧  𝑏  ∈  ℂ )  →  ( ( 𝑏  ·  2 )  =  2  →  ( ( 𝑏  ·  2 )  /  2 )  =  ( 2  /  2 ) ) ) | 
						
							| 31 | 30 | necon3d | ⊢ ( ( 𝑏  ∈  𝐸  ∧  𝑏  ∈  ℂ )  →  ( ( ( 𝑏  ·  2 )  /  2 )  ≠  ( 2  /  2 )  →  ( 𝑏  ·  2 )  ≠  2 ) ) | 
						
							| 32 | 25 31 | mpd | ⊢ ( ( 𝑏  ∈  𝐸  ∧  𝑏  ∈  ℂ )  →  ( 𝑏  ·  2 )  ≠  2 ) | 
						
							| 33 | 12 32 | mpdan | ⊢ ( 𝑏  ∈  𝐸  →  ( 𝑏  ·  2 )  ≠  2 ) | 
						
							| 34 | 5 9 33 | rspcedvd | ⊢ ( 𝑏  ∈  𝐸  →  ∃ 𝑎  ∈  𝐸 ( 𝑏  ·  𝑎 )  ≠  𝑎 ) | 
						
							| 35 | 34 | rgen | ⊢ ∀ 𝑏  ∈  𝐸 ∃ 𝑎  ∈  𝐸 ( 𝑏  ·  𝑎 )  ≠  𝑎 |