Step |
Hyp |
Ref |
Expression |
1 |
|
2zrng.e |
⊢ 𝐸 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } |
2 |
|
2zrngbas.r |
⊢ 𝑅 = ( ℂfld ↾s 𝐸 ) |
3 |
|
2zrngmmgm.1 |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
4 |
|
eldifsn |
⊢ ( 𝑎 ∈ ( 𝐸 ∖ { 0 } ) ↔ ( 𝑎 ∈ 𝐸 ∧ 𝑎 ≠ 0 ) ) |
5 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑎 → ( 𝑧 = ( 2 · 𝑥 ) ↔ 𝑎 = ( 2 · 𝑥 ) ) ) |
6 |
5
|
rexbidv |
⊢ ( 𝑧 = 𝑎 → ( ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) ↔ ∃ 𝑥 ∈ ℤ 𝑎 = ( 2 · 𝑥 ) ) ) |
7 |
6 1
|
elrab2 |
⊢ ( 𝑎 ∈ 𝐸 ↔ ( 𝑎 ∈ ℤ ∧ ∃ 𝑥 ∈ ℤ 𝑎 = ( 2 · 𝑥 ) ) ) |
8 |
|
zcn |
⊢ ( 𝑎 ∈ ℤ → 𝑎 ∈ ℂ ) |
9 |
8
|
adantr |
⊢ ( ( 𝑎 ∈ ℤ ∧ ∃ 𝑥 ∈ ℤ 𝑎 = ( 2 · 𝑥 ) ) → 𝑎 ∈ ℂ ) |
10 |
7 9
|
sylbi |
⊢ ( 𝑎 ∈ 𝐸 → 𝑎 ∈ ℂ ) |
11 |
10
|
anim1i |
⊢ ( ( 𝑎 ∈ 𝐸 ∧ 𝑎 ≠ 0 ) → ( 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0 ) ) |
12 |
4 11
|
sylbi |
⊢ ( 𝑎 ∈ ( 𝐸 ∖ { 0 } ) → ( 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0 ) ) |
13 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑏 → ( 𝑧 = ( 2 · 𝑥 ) ↔ 𝑏 = ( 2 · 𝑥 ) ) ) |
14 |
13
|
rexbidv |
⊢ ( 𝑧 = 𝑏 → ( ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) ↔ ∃ 𝑥 ∈ ℤ 𝑏 = ( 2 · 𝑥 ) ) ) |
15 |
14 1
|
elrab2 |
⊢ ( 𝑏 ∈ 𝐸 ↔ ( 𝑏 ∈ ℤ ∧ ∃ 𝑥 ∈ ℤ 𝑏 = ( 2 · 𝑥 ) ) ) |
16 |
|
zcn |
⊢ ( 𝑏 ∈ ℤ → 𝑏 ∈ ℂ ) |
17 |
16
|
adantr |
⊢ ( ( 𝑏 ∈ ℤ ∧ ∃ 𝑥 ∈ ℤ 𝑏 = ( 2 · 𝑥 ) ) → 𝑏 ∈ ℂ ) |
18 |
15 17
|
sylbi |
⊢ ( 𝑏 ∈ 𝐸 → 𝑏 ∈ ℂ ) |
19 |
18
|
ancli |
⊢ ( 𝑏 ∈ 𝐸 → ( 𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ ) ) |
20 |
1
|
1neven |
⊢ 1 ∉ 𝐸 |
21 |
|
elnelne2 |
⊢ ( ( 𝑏 ∈ 𝐸 ∧ 1 ∉ 𝐸 ) → 𝑏 ≠ 1 ) |
22 |
20 21
|
mpan2 |
⊢ ( 𝑏 ∈ 𝐸 → 𝑏 ≠ 1 ) |
23 |
22
|
ad2antrl |
⊢ ( ( ( 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0 ) ∧ ( 𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ ) ) → 𝑏 ≠ 1 ) |
24 |
|
simpr |
⊢ ( ( 𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ ) → 𝑏 ∈ ℂ ) |
25 |
24
|
anim2i |
⊢ ( ( ( 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0 ) ∧ ( 𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ ) ) → ( ( 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0 ) ∧ 𝑏 ∈ ℂ ) ) |
26 |
|
3anass |
⊢ ( ( 𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0 ) ↔ ( 𝑏 ∈ ℂ ∧ ( 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0 ) ) ) |
27 |
|
ancom |
⊢ ( ( 𝑏 ∈ ℂ ∧ ( 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0 ) ) ↔ ( ( 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0 ) ∧ 𝑏 ∈ ℂ ) ) |
28 |
26 27
|
bitri |
⊢ ( ( 𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0 ) ↔ ( ( 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0 ) ∧ 𝑏 ∈ ℂ ) ) |
29 |
25 28
|
sylibr |
⊢ ( ( ( 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0 ) ∧ ( 𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ ) ) → ( 𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0 ) ) |
30 |
|
divcan3 |
⊢ ( ( 𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0 ) → ( ( 𝑎 · 𝑏 ) / 𝑎 ) = 𝑏 ) |
31 |
29 30
|
syl |
⊢ ( ( ( 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0 ) ∧ ( 𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ ) ) → ( ( 𝑎 · 𝑏 ) / 𝑎 ) = 𝑏 ) |
32 |
|
divid |
⊢ ( ( 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0 ) → ( 𝑎 / 𝑎 ) = 1 ) |
33 |
32
|
adantr |
⊢ ( ( ( 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0 ) ∧ ( 𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ ) ) → ( 𝑎 / 𝑎 ) = 1 ) |
34 |
23 31 33
|
3netr4d |
⊢ ( ( ( 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0 ) ∧ ( 𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ ) ) → ( ( 𝑎 · 𝑏 ) / 𝑎 ) ≠ ( 𝑎 / 𝑎 ) ) |
35 |
|
simpl |
⊢ ( ( 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0 ) → 𝑎 ∈ ℂ ) |
36 |
|
mulcl |
⊢ ( ( 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ) → ( 𝑎 · 𝑏 ) ∈ ℂ ) |
37 |
35 24 36
|
syl2an |
⊢ ( ( ( 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0 ) ∧ ( 𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ ) ) → ( 𝑎 · 𝑏 ) ∈ ℂ ) |
38 |
35
|
adantr |
⊢ ( ( ( 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0 ) ∧ ( 𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ ) ) → 𝑎 ∈ ℂ ) |
39 |
|
simpl |
⊢ ( ( ( 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0 ) ∧ ( 𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ ) ) → ( 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0 ) ) |
40 |
|
div11 |
⊢ ( ( ( 𝑎 · 𝑏 ) ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ ( 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0 ) ) → ( ( ( 𝑎 · 𝑏 ) / 𝑎 ) = ( 𝑎 / 𝑎 ) ↔ ( 𝑎 · 𝑏 ) = 𝑎 ) ) |
41 |
37 38 39 40
|
syl3anc |
⊢ ( ( ( 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0 ) ∧ ( 𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ ) ) → ( ( ( 𝑎 · 𝑏 ) / 𝑎 ) = ( 𝑎 / 𝑎 ) ↔ ( 𝑎 · 𝑏 ) = 𝑎 ) ) |
42 |
41
|
biimprd |
⊢ ( ( ( 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0 ) ∧ ( 𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ ) ) → ( ( 𝑎 · 𝑏 ) = 𝑎 → ( ( 𝑎 · 𝑏 ) / 𝑎 ) = ( 𝑎 / 𝑎 ) ) ) |
43 |
42
|
necon3d |
⊢ ( ( ( 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0 ) ∧ ( 𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ ) ) → ( ( ( 𝑎 · 𝑏 ) / 𝑎 ) ≠ ( 𝑎 / 𝑎 ) → ( 𝑎 · 𝑏 ) ≠ 𝑎 ) ) |
44 |
34 43
|
mpd |
⊢ ( ( ( 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0 ) ∧ ( 𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ ) ) → ( 𝑎 · 𝑏 ) ≠ 𝑎 ) |
45 |
12 19 44
|
syl2an |
⊢ ( ( 𝑎 ∈ ( 𝐸 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐸 ) → ( 𝑎 · 𝑏 ) ≠ 𝑎 ) |
46 |
45
|
rgen2 |
⊢ ∀ 𝑎 ∈ ( 𝐸 ∖ { 0 } ) ∀ 𝑏 ∈ 𝐸 ( 𝑎 · 𝑏 ) ≠ 𝑎 |