| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2zrng.e |  | 
						
							| 2 |  | 2zrngbas.r |  | 
						
							| 3 |  | 2zrngmmgm.1 |  | 
						
							| 4 |  | eldifsn |  | 
						
							| 5 |  | eqeq1 |  | 
						
							| 6 | 5 | rexbidv |  | 
						
							| 7 | 6 1 | elrab2 |  | 
						
							| 8 |  | zcn |  | 
						
							| 9 | 8 | adantr |  | 
						
							| 10 | 7 9 | sylbi |  | 
						
							| 11 | 10 | anim1i |  | 
						
							| 12 | 4 11 | sylbi |  | 
						
							| 13 |  | eqeq1 |  | 
						
							| 14 | 13 | rexbidv |  | 
						
							| 15 | 14 1 | elrab2 |  | 
						
							| 16 |  | zcn |  | 
						
							| 17 | 16 | adantr |  | 
						
							| 18 | 15 17 | sylbi |  | 
						
							| 19 | 18 | ancli |  | 
						
							| 20 | 1 | 1neven |  | 
						
							| 21 |  | elnelne2 |  | 
						
							| 22 | 20 21 | mpan2 |  | 
						
							| 23 | 22 | ad2antrl |  | 
						
							| 24 |  | simpr |  | 
						
							| 25 | 24 | anim2i |  | 
						
							| 26 |  | 3anass |  | 
						
							| 27 |  | ancom |  | 
						
							| 28 | 26 27 | bitri |  | 
						
							| 29 | 25 28 | sylibr |  | 
						
							| 30 |  | divcan3 |  | 
						
							| 31 | 29 30 | syl |  | 
						
							| 32 |  | divid |  | 
						
							| 33 | 32 | adantr |  | 
						
							| 34 | 23 31 33 | 3netr4d |  | 
						
							| 35 |  | simpl |  | 
						
							| 36 |  | mulcl |  | 
						
							| 37 | 35 24 36 | syl2an |  | 
						
							| 38 | 35 | adantr |  | 
						
							| 39 |  | simpl |  | 
						
							| 40 |  | div11 |  | 
						
							| 41 | 37 38 39 40 | syl3anc |  | 
						
							| 42 | 41 | biimprd |  | 
						
							| 43 | 42 | necon3d |  | 
						
							| 44 | 34 43 | mpd |  | 
						
							| 45 | 12 19 44 | syl2an |  | 
						
							| 46 | 45 | rgen2 |  |