Metamath Proof Explorer


Theorem 2zrngnmlid2

Description: R has no multiplicative (left) identity. (Contributed by AV, 12-Feb-2020)

Ref Expression
Hypotheses 2zrng.e E = z | x z = 2 x
2zrngbas.r R = fld 𝑠 E
2zrngmmgm.1 M = mulGrp R
Assertion 2zrngnmlid2 a E 0 b E b a a

Proof

Step Hyp Ref Expression
1 2zrng.e E = z | x z = 2 x
2 2zrngbas.r R = fld 𝑠 E
3 2zrngmmgm.1 M = mulGrp R
4 1 2 3 2zrngnmrid a E 0 b E a b a
5 eldifi a E 0 a E
6 elrabi a z | x z = 2 x a
7 6 zcnd a z | x z = 2 x a
8 7 1 eleq2s a E a
9 5 8 syl a E 0 a
10 elrabi b z | x z = 2 x b
11 10 zcnd b z | x z = 2 x b
12 11 1 eleq2s b E b
13 mulcom a b a b = b a
14 9 12 13 syl2an a E 0 b E a b = b a
15 14 eqcomd a E 0 b E b a = a b
16 15 eqeq1d a E 0 b E b a = a a b = a
17 16 biimpd a E 0 b E b a = a a b = a
18 17 necon3d a E 0 b E a b a b a a
19 18 ralimdva a E 0 b E a b a b E b a a
20 19 ralimia a E 0 b E a b a a E 0 b E b a a
21 4 20 ax-mp a E 0 b E b a a