Step |
Hyp |
Ref |
Expression |
1 |
|
2zrng.e |
⊢ 𝐸 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } |
2 |
|
2zrngbas.r |
⊢ 𝑅 = ( ℂfld ↾s 𝐸 ) |
3 |
|
2zrngmmgm.1 |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
4 |
1 2 3
|
2zrngnmrid |
⊢ ∀ 𝑎 ∈ ( 𝐸 ∖ { 0 } ) ∀ 𝑏 ∈ 𝐸 ( 𝑎 · 𝑏 ) ≠ 𝑎 |
5 |
|
eldifi |
⊢ ( 𝑎 ∈ ( 𝐸 ∖ { 0 } ) → 𝑎 ∈ 𝐸 ) |
6 |
|
elrabi |
⊢ ( 𝑎 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑎 ∈ ℤ ) |
7 |
6
|
zcnd |
⊢ ( 𝑎 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑎 ∈ ℂ ) |
8 |
7 1
|
eleq2s |
⊢ ( 𝑎 ∈ 𝐸 → 𝑎 ∈ ℂ ) |
9 |
5 8
|
syl |
⊢ ( 𝑎 ∈ ( 𝐸 ∖ { 0 } ) → 𝑎 ∈ ℂ ) |
10 |
|
elrabi |
⊢ ( 𝑏 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑏 ∈ ℤ ) |
11 |
10
|
zcnd |
⊢ ( 𝑏 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑏 ∈ ℂ ) |
12 |
11 1
|
eleq2s |
⊢ ( 𝑏 ∈ 𝐸 → 𝑏 ∈ ℂ ) |
13 |
|
mulcom |
⊢ ( ( 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ) → ( 𝑎 · 𝑏 ) = ( 𝑏 · 𝑎 ) ) |
14 |
9 12 13
|
syl2an |
⊢ ( ( 𝑎 ∈ ( 𝐸 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐸 ) → ( 𝑎 · 𝑏 ) = ( 𝑏 · 𝑎 ) ) |
15 |
14
|
eqcomd |
⊢ ( ( 𝑎 ∈ ( 𝐸 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐸 ) → ( 𝑏 · 𝑎 ) = ( 𝑎 · 𝑏 ) ) |
16 |
15
|
eqeq1d |
⊢ ( ( 𝑎 ∈ ( 𝐸 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐸 ) → ( ( 𝑏 · 𝑎 ) = 𝑎 ↔ ( 𝑎 · 𝑏 ) = 𝑎 ) ) |
17 |
16
|
biimpd |
⊢ ( ( 𝑎 ∈ ( 𝐸 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐸 ) → ( ( 𝑏 · 𝑎 ) = 𝑎 → ( 𝑎 · 𝑏 ) = 𝑎 ) ) |
18 |
17
|
necon3d |
⊢ ( ( 𝑎 ∈ ( 𝐸 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐸 ) → ( ( 𝑎 · 𝑏 ) ≠ 𝑎 → ( 𝑏 · 𝑎 ) ≠ 𝑎 ) ) |
19 |
18
|
ralimdva |
⊢ ( 𝑎 ∈ ( 𝐸 ∖ { 0 } ) → ( ∀ 𝑏 ∈ 𝐸 ( 𝑎 · 𝑏 ) ≠ 𝑎 → ∀ 𝑏 ∈ 𝐸 ( 𝑏 · 𝑎 ) ≠ 𝑎 ) ) |
20 |
19
|
ralimia |
⊢ ( ∀ 𝑎 ∈ ( 𝐸 ∖ { 0 } ) ∀ 𝑏 ∈ 𝐸 ( 𝑎 · 𝑏 ) ≠ 𝑎 → ∀ 𝑎 ∈ ( 𝐸 ∖ { 0 } ) ∀ 𝑏 ∈ 𝐸 ( 𝑏 · 𝑎 ) ≠ 𝑎 ) |
21 |
4 20
|
ax-mp |
⊢ ∀ 𝑎 ∈ ( 𝐸 ∖ { 0 } ) ∀ 𝑏 ∈ 𝐸 ( 𝑏 · 𝑎 ) ≠ 𝑎 |