Metamath Proof Explorer


Theorem 2zrngnmlid2

Description: R has no multiplicative (left) identity. (Contributed by AV, 12-Feb-2020)

Ref Expression
Hypotheses 2zrng.e 𝐸 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) }
2zrngbas.r 𝑅 = ( ℂflds 𝐸 )
2zrngmmgm.1 𝑀 = ( mulGrp ‘ 𝑅 )
Assertion 2zrngnmlid2 𝑎 ∈ ( 𝐸 ∖ { 0 } ) ∀ 𝑏𝐸 ( 𝑏 · 𝑎 ) ≠ 𝑎

Proof

Step Hyp Ref Expression
1 2zrng.e 𝐸 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) }
2 2zrngbas.r 𝑅 = ( ℂflds 𝐸 )
3 2zrngmmgm.1 𝑀 = ( mulGrp ‘ 𝑅 )
4 1 2 3 2zrngnmrid 𝑎 ∈ ( 𝐸 ∖ { 0 } ) ∀ 𝑏𝐸 ( 𝑎 · 𝑏 ) ≠ 𝑎
5 eldifi ( 𝑎 ∈ ( 𝐸 ∖ { 0 } ) → 𝑎𝐸 )
6 elrabi ( 𝑎 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑎 ∈ ℤ )
7 6 zcnd ( 𝑎 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑎 ∈ ℂ )
8 7 1 eleq2s ( 𝑎𝐸𝑎 ∈ ℂ )
9 5 8 syl ( 𝑎 ∈ ( 𝐸 ∖ { 0 } ) → 𝑎 ∈ ℂ )
10 elrabi ( 𝑏 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑏 ∈ ℤ )
11 10 zcnd ( 𝑏 ∈ { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } → 𝑏 ∈ ℂ )
12 11 1 eleq2s ( 𝑏𝐸𝑏 ∈ ℂ )
13 mulcom ( ( 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ) → ( 𝑎 · 𝑏 ) = ( 𝑏 · 𝑎 ) )
14 9 12 13 syl2an ( ( 𝑎 ∈ ( 𝐸 ∖ { 0 } ) ∧ 𝑏𝐸 ) → ( 𝑎 · 𝑏 ) = ( 𝑏 · 𝑎 ) )
15 14 eqcomd ( ( 𝑎 ∈ ( 𝐸 ∖ { 0 } ) ∧ 𝑏𝐸 ) → ( 𝑏 · 𝑎 ) = ( 𝑎 · 𝑏 ) )
16 15 eqeq1d ( ( 𝑎 ∈ ( 𝐸 ∖ { 0 } ) ∧ 𝑏𝐸 ) → ( ( 𝑏 · 𝑎 ) = 𝑎 ↔ ( 𝑎 · 𝑏 ) = 𝑎 ) )
17 16 biimpd ( ( 𝑎 ∈ ( 𝐸 ∖ { 0 } ) ∧ 𝑏𝐸 ) → ( ( 𝑏 · 𝑎 ) = 𝑎 → ( 𝑎 · 𝑏 ) = 𝑎 ) )
18 17 necon3d ( ( 𝑎 ∈ ( 𝐸 ∖ { 0 } ) ∧ 𝑏𝐸 ) → ( ( 𝑎 · 𝑏 ) ≠ 𝑎 → ( 𝑏 · 𝑎 ) ≠ 𝑎 ) )
19 18 ralimdva ( 𝑎 ∈ ( 𝐸 ∖ { 0 } ) → ( ∀ 𝑏𝐸 ( 𝑎 · 𝑏 ) ≠ 𝑎 → ∀ 𝑏𝐸 ( 𝑏 · 𝑎 ) ≠ 𝑎 ) )
20 19 ralimia ( ∀ 𝑎 ∈ ( 𝐸 ∖ { 0 } ) ∀ 𝑏𝐸 ( 𝑎 · 𝑏 ) ≠ 𝑎 → ∀ 𝑎 ∈ ( 𝐸 ∖ { 0 } ) ∀ 𝑏𝐸 ( 𝑏 · 𝑎 ) ≠ 𝑎 )
21 4 20 ax-mp 𝑎 ∈ ( 𝐸 ∖ { 0 } ) ∀ 𝑏𝐸 ( 𝑏 · 𝑎 ) ≠ 𝑎