| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2zrng.e |
⊢ 𝐸 = { 𝑧 ∈ ℤ ∣ ∃ 𝑥 ∈ ℤ 𝑧 = ( 2 · 𝑥 ) } |
| 2 |
|
2zrngbas.r |
⊢ 𝑅 = ( ℂfld ↾s 𝐸 ) |
| 3 |
|
2zrngmmgm.1 |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
| 4 |
1 2 3
|
2zrngnmlid |
⊢ ∀ 𝑏 ∈ 𝐸 ∃ 𝑎 ∈ 𝐸 ( 𝑏 · 𝑎 ) ≠ 𝑎 |
| 5 |
1 2
|
2zrngbas |
⊢ 𝐸 = ( Base ‘ 𝑅 ) |
| 6 |
3 5
|
mgpbas |
⊢ 𝐸 = ( Base ‘ 𝑀 ) |
| 7 |
1 2
|
2zrngmul |
⊢ · = ( .r ‘ 𝑅 ) |
| 8 |
3 7
|
mgpplusg |
⊢ · = ( +g ‘ 𝑀 ) |
| 9 |
6 8
|
isnmnd |
⊢ ( ∀ 𝑏 ∈ 𝐸 ∃ 𝑎 ∈ 𝐸 ( 𝑏 · 𝑎 ) ≠ 𝑎 → 𝑀 ∉ Mnd ) |
| 10 |
|
df-nel |
⊢ ( 𝑀 ∉ Mnd ↔ ¬ 𝑀 ∈ Mnd ) |
| 11 |
9 10
|
sylib |
⊢ ( ∀ 𝑏 ∈ 𝐸 ∃ 𝑎 ∈ 𝐸 ( 𝑏 · 𝑎 ) ≠ 𝑎 → ¬ 𝑀 ∈ Mnd ) |
| 12 |
4 11
|
ax-mp |
⊢ ¬ 𝑀 ∈ Mnd |
| 13 |
12
|
3mix2i |
⊢ ( ¬ 𝑅 ∈ Grp ∨ ¬ 𝑀 ∈ Mnd ∨ ¬ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 · ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 · 𝑧 ) ) ) ) |
| 14 |
|
3ianor |
⊢ ( ¬ ( 𝑅 ∈ Grp ∧ 𝑀 ∈ Mnd ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 · ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 · 𝑧 ) ) ) ) ↔ ( ¬ 𝑅 ∈ Grp ∨ ¬ 𝑀 ∈ Mnd ∨ ¬ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 · ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 · 𝑧 ) ) ) ) ) |
| 15 |
13 14
|
mpbir |
⊢ ¬ ( 𝑅 ∈ Grp ∧ 𝑀 ∈ Mnd ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 · ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 · 𝑧 ) ) ) ) |
| 16 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 17 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 18 |
16 3 17 7
|
isring |
⊢ ( 𝑅 ∈ Ring ↔ ( 𝑅 ∈ Grp ∧ 𝑀 ∈ Mnd ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 · ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 · 𝑧 ) ) ) ) ) |
| 19 |
15 18
|
mtbir |
⊢ ¬ 𝑅 ∈ Ring |
| 20 |
19
|
nelir |
⊢ 𝑅 ∉ Ring |