| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2zrng.e | ⊢ 𝐸  =  { 𝑧  ∈  ℤ  ∣  ∃ 𝑥  ∈  ℤ 𝑧  =  ( 2  ·  𝑥 ) } | 
						
							| 2 |  | 2zrngbas.r | ⊢ 𝑅  =  ( ℂfld  ↾s  𝐸 ) | 
						
							| 3 |  | 2zrngmmgm.1 | ⊢ 𝑀  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 4 | 1 2 3 | 2zrngnmlid | ⊢ ∀ 𝑏  ∈  𝐸 ∃ 𝑎  ∈  𝐸 ( 𝑏  ·  𝑎 )  ≠  𝑎 | 
						
							| 5 | 1 2 | 2zrngbas | ⊢ 𝐸  =  ( Base ‘ 𝑅 ) | 
						
							| 6 | 3 5 | mgpbas | ⊢ 𝐸  =  ( Base ‘ 𝑀 ) | 
						
							| 7 | 1 2 | 2zrngmul | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 8 | 3 7 | mgpplusg | ⊢  ·   =  ( +g ‘ 𝑀 ) | 
						
							| 9 | 6 8 | isnmnd | ⊢ ( ∀ 𝑏  ∈  𝐸 ∃ 𝑎  ∈  𝐸 ( 𝑏  ·  𝑎 )  ≠  𝑎  →  𝑀  ∉  Mnd ) | 
						
							| 10 |  | df-nel | ⊢ ( 𝑀  ∉  Mnd  ↔  ¬  𝑀  ∈  Mnd ) | 
						
							| 11 | 9 10 | sylib | ⊢ ( ∀ 𝑏  ∈  𝐸 ∃ 𝑎  ∈  𝐸 ( 𝑏  ·  𝑎 )  ≠  𝑎  →  ¬  𝑀  ∈  Mnd ) | 
						
							| 12 | 4 11 | ax-mp | ⊢ ¬  𝑀  ∈  Mnd | 
						
							| 13 | 12 | 3mix2i | ⊢ ( ¬  𝑅  ∈  Grp  ∨  ¬  𝑀  ∈  Mnd  ∨  ¬  ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ∀ 𝑧  ∈  ( Base ‘ 𝑅 ) ( ( 𝑥  ·  ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) )  =  ( ( 𝑥  ·  𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥  ·  𝑧 ) )  ∧  ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  ·  𝑧 )  =  ( ( 𝑥  ·  𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦  ·  𝑧 ) ) ) ) | 
						
							| 14 |  | 3ianor | ⊢ ( ¬  ( 𝑅  ∈  Grp  ∧  𝑀  ∈  Mnd  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ∀ 𝑧  ∈  ( Base ‘ 𝑅 ) ( ( 𝑥  ·  ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) )  =  ( ( 𝑥  ·  𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥  ·  𝑧 ) )  ∧  ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  ·  𝑧 )  =  ( ( 𝑥  ·  𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦  ·  𝑧 ) ) ) )  ↔  ( ¬  𝑅  ∈  Grp  ∨  ¬  𝑀  ∈  Mnd  ∨  ¬  ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ∀ 𝑧  ∈  ( Base ‘ 𝑅 ) ( ( 𝑥  ·  ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) )  =  ( ( 𝑥  ·  𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥  ·  𝑧 ) )  ∧  ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  ·  𝑧 )  =  ( ( 𝑥  ·  𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦  ·  𝑧 ) ) ) ) ) | 
						
							| 15 | 13 14 | mpbir | ⊢ ¬  ( 𝑅  ∈  Grp  ∧  𝑀  ∈  Mnd  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ∀ 𝑧  ∈  ( Base ‘ 𝑅 ) ( ( 𝑥  ·  ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) )  =  ( ( 𝑥  ·  𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥  ·  𝑧 ) )  ∧  ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  ·  𝑧 )  =  ( ( 𝑥  ·  𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦  ·  𝑧 ) ) ) ) | 
						
							| 16 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 17 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 18 | 16 3 17 7 | isring | ⊢ ( 𝑅  ∈  Ring  ↔  ( 𝑅  ∈  Grp  ∧  𝑀  ∈  Mnd  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ∀ 𝑧  ∈  ( Base ‘ 𝑅 ) ( ( 𝑥  ·  ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) )  =  ( ( 𝑥  ·  𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥  ·  𝑧 ) )  ∧  ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  ·  𝑧 )  =  ( ( 𝑥  ·  𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦  ·  𝑧 ) ) ) ) ) | 
						
							| 19 | 15 18 | mtbir | ⊢ ¬  𝑅  ∈  Ring | 
						
							| 20 | 19 | nelir | ⊢ 𝑅  ∉  Ring |