| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2zrng.e |  |-  E = { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } | 
						
							| 2 |  | 2zrngbas.r |  |-  R = ( CCfld |`s E ) | 
						
							| 3 |  | 2zrngmmgm.1 |  |-  M = ( mulGrp ` R ) | 
						
							| 4 | 1 | 2even |  |-  2 e. E | 
						
							| 5 | 4 | a1i |  |-  ( b e. E -> 2 e. E ) | 
						
							| 6 |  | oveq2 |  |-  ( a = 2 -> ( b x. a ) = ( b x. 2 ) ) | 
						
							| 7 |  | id |  |-  ( a = 2 -> a = 2 ) | 
						
							| 8 | 6 7 | neeq12d |  |-  ( a = 2 -> ( ( b x. a ) =/= a <-> ( b x. 2 ) =/= 2 ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( b e. E /\ a = 2 ) -> ( ( b x. a ) =/= a <-> ( b x. 2 ) =/= 2 ) ) | 
						
							| 10 |  | elrabi |  |-  ( b e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } -> b e. ZZ ) | 
						
							| 11 | 10 | zcnd |  |-  ( b e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } -> b e. CC ) | 
						
							| 12 | 11 1 | eleq2s |  |-  ( b e. E -> b e. CC ) | 
						
							| 13 | 1 | 1neven |  |-  1 e/ E | 
						
							| 14 |  | elnelne2 |  |-  ( ( b e. E /\ 1 e/ E ) -> b =/= 1 ) | 
						
							| 15 | 13 14 | mpan2 |  |-  ( b e. E -> b =/= 1 ) | 
						
							| 16 | 15 | adantr |  |-  ( ( b e. E /\ b e. CC ) -> b =/= 1 ) | 
						
							| 17 |  | simpr |  |-  ( ( b e. E /\ b e. CC ) -> b e. CC ) | 
						
							| 18 |  | 2cnd |  |-  ( ( b e. E /\ b e. CC ) -> 2 e. CC ) | 
						
							| 19 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 20 | 19 | a1i |  |-  ( ( b e. E /\ b e. CC ) -> 2 =/= 0 ) | 
						
							| 21 | 17 18 20 | divcan4d |  |-  ( ( b e. E /\ b e. CC ) -> ( ( b x. 2 ) / 2 ) = b ) | 
						
							| 22 |  | 2cnne0 |  |-  ( 2 e. CC /\ 2 =/= 0 ) | 
						
							| 23 |  | divid |  |-  ( ( 2 e. CC /\ 2 =/= 0 ) -> ( 2 / 2 ) = 1 ) | 
						
							| 24 | 22 23 | mp1i |  |-  ( ( b e. E /\ b e. CC ) -> ( 2 / 2 ) = 1 ) | 
						
							| 25 | 16 21 24 | 3netr4d |  |-  ( ( b e. E /\ b e. CC ) -> ( ( b x. 2 ) / 2 ) =/= ( 2 / 2 ) ) | 
						
							| 26 | 17 18 | mulcld |  |-  ( ( b e. E /\ b e. CC ) -> ( b x. 2 ) e. CC ) | 
						
							| 27 | 22 | a1i |  |-  ( ( b e. E /\ b e. CC ) -> ( 2 e. CC /\ 2 =/= 0 ) ) | 
						
							| 28 |  | div11 |  |-  ( ( ( b x. 2 ) e. CC /\ 2 e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( b x. 2 ) / 2 ) = ( 2 / 2 ) <-> ( b x. 2 ) = 2 ) ) | 
						
							| 29 | 26 18 27 28 | syl3anc |  |-  ( ( b e. E /\ b e. CC ) -> ( ( ( b x. 2 ) / 2 ) = ( 2 / 2 ) <-> ( b x. 2 ) = 2 ) ) | 
						
							| 30 | 29 | biimprd |  |-  ( ( b e. E /\ b e. CC ) -> ( ( b x. 2 ) = 2 -> ( ( b x. 2 ) / 2 ) = ( 2 / 2 ) ) ) | 
						
							| 31 | 30 | necon3d |  |-  ( ( b e. E /\ b e. CC ) -> ( ( ( b x. 2 ) / 2 ) =/= ( 2 / 2 ) -> ( b x. 2 ) =/= 2 ) ) | 
						
							| 32 | 25 31 | mpd |  |-  ( ( b e. E /\ b e. CC ) -> ( b x. 2 ) =/= 2 ) | 
						
							| 33 | 12 32 | mpdan |  |-  ( b e. E -> ( b x. 2 ) =/= 2 ) | 
						
							| 34 | 5 9 33 | rspcedvd |  |-  ( b e. E -> E. a e. E ( b x. a ) =/= a ) | 
						
							| 35 | 34 | rgen |  |-  A. b e. E E. a e. E ( b x. a ) =/= a |