Step |
Hyp |
Ref |
Expression |
1 |
|
2zrng.e |
|- E = { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } |
2 |
|
2zrngbas.r |
|- R = ( CCfld |`s E ) |
3 |
|
2zrngmmgm.1 |
|- M = ( mulGrp ` R ) |
4 |
1
|
2even |
|- 2 e. E |
5 |
4
|
a1i |
|- ( b e. E -> 2 e. E ) |
6 |
|
oveq2 |
|- ( a = 2 -> ( b x. a ) = ( b x. 2 ) ) |
7 |
|
id |
|- ( a = 2 -> a = 2 ) |
8 |
6 7
|
neeq12d |
|- ( a = 2 -> ( ( b x. a ) =/= a <-> ( b x. 2 ) =/= 2 ) ) |
9 |
8
|
adantl |
|- ( ( b e. E /\ a = 2 ) -> ( ( b x. a ) =/= a <-> ( b x. 2 ) =/= 2 ) ) |
10 |
|
elrabi |
|- ( b e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } -> b e. ZZ ) |
11 |
10
|
zcnd |
|- ( b e. { z e. ZZ | E. x e. ZZ z = ( 2 x. x ) } -> b e. CC ) |
12 |
11 1
|
eleq2s |
|- ( b e. E -> b e. CC ) |
13 |
1
|
1neven |
|- 1 e/ E |
14 |
|
elnelne2 |
|- ( ( b e. E /\ 1 e/ E ) -> b =/= 1 ) |
15 |
13 14
|
mpan2 |
|- ( b e. E -> b =/= 1 ) |
16 |
15
|
adantr |
|- ( ( b e. E /\ b e. CC ) -> b =/= 1 ) |
17 |
|
simpr |
|- ( ( b e. E /\ b e. CC ) -> b e. CC ) |
18 |
|
2cnd |
|- ( ( b e. E /\ b e. CC ) -> 2 e. CC ) |
19 |
|
2ne0 |
|- 2 =/= 0 |
20 |
19
|
a1i |
|- ( ( b e. E /\ b e. CC ) -> 2 =/= 0 ) |
21 |
17 18 20
|
divcan4d |
|- ( ( b e. E /\ b e. CC ) -> ( ( b x. 2 ) / 2 ) = b ) |
22 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
23 |
|
divid |
|- ( ( 2 e. CC /\ 2 =/= 0 ) -> ( 2 / 2 ) = 1 ) |
24 |
22 23
|
mp1i |
|- ( ( b e. E /\ b e. CC ) -> ( 2 / 2 ) = 1 ) |
25 |
16 21 24
|
3netr4d |
|- ( ( b e. E /\ b e. CC ) -> ( ( b x. 2 ) / 2 ) =/= ( 2 / 2 ) ) |
26 |
17 18
|
mulcld |
|- ( ( b e. E /\ b e. CC ) -> ( b x. 2 ) e. CC ) |
27 |
22
|
a1i |
|- ( ( b e. E /\ b e. CC ) -> ( 2 e. CC /\ 2 =/= 0 ) ) |
28 |
|
div11 |
|- ( ( ( b x. 2 ) e. CC /\ 2 e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( b x. 2 ) / 2 ) = ( 2 / 2 ) <-> ( b x. 2 ) = 2 ) ) |
29 |
26 18 27 28
|
syl3anc |
|- ( ( b e. E /\ b e. CC ) -> ( ( ( b x. 2 ) / 2 ) = ( 2 / 2 ) <-> ( b x. 2 ) = 2 ) ) |
30 |
29
|
biimprd |
|- ( ( b e. E /\ b e. CC ) -> ( ( b x. 2 ) = 2 -> ( ( b x. 2 ) / 2 ) = ( 2 / 2 ) ) ) |
31 |
30
|
necon3d |
|- ( ( b e. E /\ b e. CC ) -> ( ( ( b x. 2 ) / 2 ) =/= ( 2 / 2 ) -> ( b x. 2 ) =/= 2 ) ) |
32 |
25 31
|
mpd |
|- ( ( b e. E /\ b e. CC ) -> ( b x. 2 ) =/= 2 ) |
33 |
12 32
|
mpdan |
|- ( b e. E -> ( b x. 2 ) =/= 2 ) |
34 |
5 9 33
|
rspcedvd |
|- ( b e. E -> E. a e. E ( b x. a ) =/= a ) |
35 |
34
|
rgen |
|- A. b e. E E. a e. E ( b x. a ) =/= a |