Metamath Proof Explorer


Theorem 2zrngALT

Description: The ring of integers restricted to the even integers is a non-unital ring, the "ring of even integers". Alternate version of 2zrng , based on a restriction of the field of the complex numbers. The proof is based on the facts that the ring of even integers is an additive abelian group (see 2zrngaabl ) and a multiplicative semigroup (see 2zrngmsgrp ). (Contributed by AV, 11-Feb-2020) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses 2zrng.e E = z | x z = 2 x
2zrngbas.r R = fld 𝑠 E
2zrngmmgm.1 M = mulGrp R
Assertion 2zrngALT R Rng

Proof

Step Hyp Ref Expression
1 2zrng.e E = z | x z = 2 x
2 2zrngbas.r R = fld 𝑠 E
3 2zrngmmgm.1 M = mulGrp R
4 1 2 2zrngaabl R Abel
5 1 2 3 2zrngmsgrp M Smgrp
6 elrabi a z | x z = 2 x a
7 6 zcnd a z | x z = 2 x a
8 7 1 eleq2s a E a
9 elrabi b z | x z = 2 x b
10 9 zcnd b z | x z = 2 x b
11 10 1 eleq2s b E b
12 elrabi y z | x z = 2 x y
13 12 zcnd y z | x z = 2 x y
14 13 1 eleq2s y E y
15 adddi a b y a b + y = a b + a y
16 adddir a b y a + b y = a y + b y
17 15 16 jca a b y a b + y = a b + a y a + b y = a y + b y
18 8 11 14 17 syl3an a E b E y E a b + y = a b + a y a + b y = a y + b y
19 18 rgen3 a E b E y E a b + y = a b + a y a + b y = a y + b y
20 1 2 2zrngbas E = Base R
21 1 2 2zrngadd + = + R
22 1 2 2zrngmul × = R
23 20 3 21 22 isrng R Rng R Abel M Smgrp a E b E y E a b + y = a b + a y a + b y = a y + b y
24 4 5 19 23 mpbir3an R Rng