Metamath Proof Explorer


Theorem 3anbi23d

Description: Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006)

Ref Expression
Hypotheses 3anbi12d.1 φψχ
3anbi12d.2 φθτ
Assertion 3anbi23d φηψθηχτ

Proof

Step Hyp Ref Expression
1 3anbi12d.1 φψχ
2 3anbi12d.2 φθτ
3 biidd φηη
4 3 1 2 3anbi123d φηψθηχτ