Metamath Proof Explorer


Theorem 3anim123d

Description: Deduction joining 3 implications to form implication of conjunctions. (Contributed by NM, 24-Feb-2005)

Ref Expression
Hypotheses 3anim123d.1 φψχ
3anim123d.2 φθτ
3anim123d.3 φηζ
Assertion 3anim123d φψθηχτζ

Proof

Step Hyp Ref Expression
1 3anim123d.1 φψχ
2 3anim123d.2 φθτ
3 3anim123d.3 φηζ
4 1 2 anim12d φψθχτ
5 4 3 anim12d φψθηχτζ
6 df-3an ψθηψθη
7 df-3an χτζχτζ
8 5 6 7 3imtr4g φψθηχτζ