Metamath Proof Explorer


Theorem 3bitr4g

Description: More general version of 3bitr4i . Useful for converting definitions in a formula. (Contributed by NM, 11-May-1993)

Ref Expression
Hypotheses 3bitr4g.1 φ ψ χ
3bitr4g.2 θ ψ
3bitr4g.3 τ χ
Assertion 3bitr4g φ θ τ

Proof

Step Hyp Ref Expression
1 3bitr4g.1 φ ψ χ
2 3bitr4g.2 θ ψ
3 3bitr4g.3 τ χ
4 2 1 bitrid φ θ χ
5 4 3 bitr4di φ θ τ