Metamath Proof Explorer


Theorem 3bitr4rd

Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006)

Ref Expression
Hypotheses 3bitr4d.1 φψχ
3bitr4d.2 φθψ
3bitr4d.3 φτχ
Assertion 3bitr4rd φτθ

Proof

Step Hyp Ref Expression
1 3bitr4d.1 φψχ
2 3bitr4d.2 φθψ
3 3bitr4d.3 φτχ
4 3 1 bitr4d φτψ
5 4 2 bitr4d φτθ