Metamath Proof Explorer


Theorem 3brtr3d

Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 18-Oct-1999)

Ref Expression
Hypotheses 3brtr3d.1 φARB
3brtr3d.2 φA=C
3brtr3d.3 φB=D
Assertion 3brtr3d φCRD

Proof

Step Hyp Ref Expression
1 3brtr3d.1 φARB
2 3brtr3d.2 φA=C
3 3brtr3d.3 φB=D
4 2 3 breq12d φARBCRD
5 1 4 mpbid φCRD