Metamath Proof Explorer


Theorem 3cyclpd

Description: Construction of a 3-cycle from three given edges in a graph, containing an endpoint of one of these edges. (Contributed by Alexander van der Vekens, 17-Nov-2017) (Revised by AV, 10-Feb-2021) (Revised by AV, 24-Mar-2021)

Ref Expression
Hypotheses 3wlkd.p P=⟨“ABCD”⟩
3wlkd.f F=⟨“JKL”⟩
3wlkd.s φAVBVCVDV
3wlkd.n φABACBCBDCD
3wlkd.e φABIJBCIKCDIL
3wlkd.v V=VtxG
3wlkd.i I=iEdgG
3trld.n φJKJLKL
3cycld.e φA=D
Assertion 3cyclpd φFCyclesGPF=3P0=A

Proof

Step Hyp Ref Expression
1 3wlkd.p P=⟨“ABCD”⟩
2 3wlkd.f F=⟨“JKL”⟩
3 3wlkd.s φAVBVCVDV
4 3wlkd.n φABACBCBDCD
5 3wlkd.e φABIJBCIKCDIL
6 3wlkd.v V=VtxG
7 3wlkd.i I=iEdgG
8 3trld.n φJKJLKL
9 3cycld.e φA=D
10 1 2 3 4 5 6 7 8 9 3cycld φFCyclesGP
11 2 fveq2i F=⟨“JKL”⟩
12 s3len ⟨“JKL”⟩=3
13 11 12 eqtri F=3
14 13 a1i φF=3
15 1 fveq1i P0=⟨“ABCD”⟩0
16 s4fv0 AV⟨“ABCD”⟩0=A
17 15 16 eqtrid AVP0=A
18 17 ad2antrr AVBVCVDVP0=A
19 3 18 syl φP0=A
20 10 14 19 3jca φFCyclesGPF=3P0=A