Metamath Proof Explorer


Theorem 3eqtr2d

Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006)

Ref Expression
Hypotheses 3eqtr2d.1 φA=B
3eqtr2d.2 φC=B
3eqtr2d.3 φC=D
Assertion 3eqtr2d φA=D

Proof

Step Hyp Ref Expression
1 3eqtr2d.1 φA=B
2 3eqtr2d.2 φC=B
3 3eqtr2d.3 φC=D
4 1 2 eqtr4d φA=C
5 4 3 eqtrd φA=D