Metamath Proof Explorer


Theorem 3eqtr3a

Description: A chained equality inference, useful for converting from definitions. (Contributed by Mario Carneiro, 6-Nov-2015)

Ref Expression
Hypotheses 3eqtr3a.1 A=B
3eqtr3a.2 φA=C
3eqtr3a.3 φB=D
Assertion 3eqtr3a φC=D

Proof

Step Hyp Ref Expression
1 3eqtr3a.1 A=B
2 3eqtr3a.2 φA=C
3 3eqtr3a.3 φB=D
4 1 3 eqtrid φA=D
5 2 4 eqtr3d φC=D