Metamath Proof Explorer


Theorem 3lt6

Description: 3 is less than 6. (Contributed by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion 3lt6 3<6

Proof

Step Hyp Ref Expression
1 3lt4 3<4
2 4lt6 4<6
3 3re 3
4 4re 4
5 6re 6
6 3 4 5 lttri 3<44<63<6
7 1 2 6 mp2an 3<6