Metamath Proof Explorer


Theorem 3optocl

Description: Implicit substitution of classes for ordered pairs. (Contributed by NM, 12-Mar-1995)

Ref Expression
Hypotheses 3optocl.1 R=D×F
3optocl.2 xy=Aφψ
3optocl.3 zw=Bψχ
3optocl.4 vu=Cχθ
3optocl.5 xDyFzDwFvDuFφ
Assertion 3optocl ARBRCRθ

Proof

Step Hyp Ref Expression
1 3optocl.1 R=D×F
2 3optocl.2 xy=Aφψ
3 3optocl.3 zw=Bψχ
4 3optocl.4 vu=Cχθ
5 3optocl.5 xDyFzDwFvDuFφ
6 4 imbi2d vu=CARBRχARBRθ
7 2 imbi2d xy=AvDuFφvDuFψ
8 3 imbi2d zw=BvDuFψvDuFχ
9 5 3expia xDyFzDwFvDuFφ
10 1 7 8 9 2optocl ARBRvDuFχ
11 10 com12 vDuFARBRχ
12 1 6 11 optocl CRARBRθ
13 12 impcom ARBRCRθ
14 13 3impa ARBRCRθ