Metamath Proof Explorer


Theorem 3pthond

Description: A path of length 3 from one vertex to another, different vertex via a third vertex. (Contributed by AV, 10-Feb-2021) (Revised by AV, 24-Mar-2021)

Ref Expression
Hypotheses 3wlkd.p P=⟨“ABCD”⟩
3wlkd.f F=⟨“JKL”⟩
3wlkd.s φAVBVCVDV
3wlkd.n φABACBCBDCD
3wlkd.e φABIJBCIKCDIL
3wlkd.v V=VtxG
3wlkd.i I=iEdgG
3trld.n φJKJLKL
Assertion 3pthond φFAPathsOnGDP

Proof

Step Hyp Ref Expression
1 3wlkd.p P=⟨“ABCD”⟩
2 3wlkd.f F=⟨“JKL”⟩
3 3wlkd.s φAVBVCVDV
4 3wlkd.n φABACBCBDCD
5 3wlkd.e φABIJBCIKCDIL
6 3wlkd.v V=VtxG
7 3wlkd.i I=iEdgG
8 3trld.n φJKJLKL
9 1 2 3 4 5 6 7 8 3trlond φFATrailsOnGDP
10 1 2 3 4 5 6 7 8 3pthd φFPathsGP
11 3 simplld φAV
12 3 simprrd φDV
13 s3cli ⟨“JKL”⟩WordV
14 2 13 eqeltri FWordV
15 s4cli ⟨“ABCD”⟩WordV
16 1 15 eqeltri PWordV
17 14 16 pm3.2i FWordVPWordV
18 17 a1i φFWordVPWordV
19 6 ispthson AVDVFWordVPWordVFAPathsOnGDPFATrailsOnGDPFPathsGP
20 11 12 18 19 syl21anc φFAPathsOnGDPFATrailsOnGDPFPathsGP
21 9 10 20 mpbir2and φFAPathsOnGDP