Metamath Proof Explorer


Theorem 3spthd

Description: A simple path of length 3 from one vertex to another, different vertex via a third vertex. (Contributed by AV, 10-Feb-2021) (Revised by AV, 24-Mar-2021) (Proof shortened by AV, 30-Oct-2021)

Ref Expression
Hypotheses 3wlkd.p P=⟨“ABCD”⟩
3wlkd.f F=⟨“JKL”⟩
3wlkd.s φAVBVCVDV
3wlkd.n φABACBCBDCD
3wlkd.e φABIJBCIKCDIL
3wlkd.v V=VtxG
3wlkd.i I=iEdgG
3trld.n φJKJLKL
3spthd.n φAD
Assertion 3spthd φFSPathsGP

Proof

Step Hyp Ref Expression
1 3wlkd.p P=⟨“ABCD”⟩
2 3wlkd.f F=⟨“JKL”⟩
3 3wlkd.s φAVBVCVDV
4 3wlkd.n φABACBCBDCD
5 3wlkd.e φABIJBCIKCDIL
6 3wlkd.v V=VtxG
7 3wlkd.i I=iEdgG
8 3trld.n φJKJLKL
9 3spthd.n φAD
10 1 2 3 4 5 6 7 8 3trld φFTrailsGP
11 simpr φFTrailsGPFTrailsGP
12 df-3an ABACADABACAD
13 12 simplbi2 ABACADABACAD
14 13 3ad2ant1 ABACBCBDCDADABACAD
15 9 14 mpan9 φABACBCBDCDABACAD
16 simpr2 φABACBCBDCDBCBD
17 simpr3 φABACBCBDCDCD
18 15 16 17 3jca φABACBCBDCDABACADBCBDCD
19 4 18 mpdan φABACADBCBDCD
20 funcnvs4 AVBVCVDVABACADBCBDCDFun⟨“ABCD”⟩-1
21 3 19 20 syl2anc φFun⟨“ABCD”⟩-1
22 21 adantr φFTrailsGPFun⟨“ABCD”⟩-1
23 1 a1i φFTrailsGPP=⟨“ABCD”⟩
24 23 cnveqd φFTrailsGPP-1=⟨“ABCD”⟩-1
25 24 funeqd φFTrailsGPFunP-1Fun⟨“ABCD”⟩-1
26 22 25 mpbird φFTrailsGPFunP-1
27 isspth FSPathsGPFTrailsGPFunP-1
28 11 26 27 sylanbrc φFTrailsGPFSPathsGP
29 10 28 mpdan φFSPathsGP