Metamath Proof Explorer


Theorem 3trld

Description: Construction of a trail from two given edges in a graph. (Contributed by Alexander van der Vekens, 13-Nov-2017) (Revised by AV, 8-Feb-2021) (Revised by AV, 24-Mar-2021) (Proof shortened by AV, 30-Oct-2021)

Ref Expression
Hypotheses 3wlkd.p P=⟨“ABCD”⟩
3wlkd.f F=⟨“JKL”⟩
3wlkd.s φAVBVCVDV
3wlkd.n φABACBCBDCD
3wlkd.e φABIJBCIKCDIL
3wlkd.v V=VtxG
3wlkd.i I=iEdgG
3trld.n φJKJLKL
Assertion 3trld φFTrailsGP

Proof

Step Hyp Ref Expression
1 3wlkd.p P=⟨“ABCD”⟩
2 3wlkd.f F=⟨“JKL”⟩
3 3wlkd.s φAVBVCVDV
4 3wlkd.n φABACBCBDCD
5 3wlkd.e φABIJBCIKCDIL
6 3wlkd.v V=VtxG
7 3wlkd.i I=iEdgG
8 3trld.n φJKJLKL
9 1 2 3 4 5 6 7 3wlkd φFWalksGP
10 1 2 3 4 5 3wlkdlem7 φJVKVLV
11 funcnvs3 JVKVLVJKJLKLFun⟨“JKL”⟩-1
12 10 8 11 syl2anc φFun⟨“JKL”⟩-1
13 2 cnveqi F-1=⟨“JKL”⟩-1
14 13 funeqi FunF-1Fun⟨“JKL”⟩-1
15 12 14 sylibr φFunF-1
16 istrl FTrailsGPFWalksGPFunF-1
17 9 15 16 sylanbrc φFTrailsGP