Metamath Proof Explorer


Theorem 3wlkdlem2

Description: Lemma 2 for 3wlkd . (Contributed by AV, 7-Feb-2021)

Ref Expression
Hypotheses 3wlkd.p P=⟨“ABCD”⟩
3wlkd.f F=⟨“JKL”⟩
Assertion 3wlkdlem2 0..^F=012

Proof

Step Hyp Ref Expression
1 3wlkd.p P=⟨“ABCD”⟩
2 3wlkd.f F=⟨“JKL”⟩
3 2 fveq2i F=⟨“JKL”⟩
4 s3len ⟨“JKL”⟩=3
5 3 4 eqtri F=3
6 5 oveq2i 0..^F=0..^3
7 fzo0to3tp 0..^3=012
8 6 7 eqtri 0..^F=012