Metamath Proof Explorer


Theorem 41prothprmlem1

Description: Lemma 1 for 41prothprm . (Contributed by AV, 4-Jul-2020)

Ref Expression
Hypothesis 41prothprm.p P = 41
Assertion 41prothprmlem1 P 1 2 = 20

Proof

Step Hyp Ref Expression
1 41prothprm.p P = 41
2 dfdec10 41 = 10 4 + 1
3 1 2 eqtri P = 10 4 + 1
4 3 oveq1i P 1 = 10 4 + 1 - 1
5 10nn 10
6 5 nncni 10
7 4cn 4
8 6 7 mulcli 10 4
9 pncan1 10 4 10 4 + 1 - 1 = 10 4
10 8 9 ax-mp 10 4 + 1 - 1 = 10 4
11 4 10 eqtri P 1 = 10 4
12 11 oveq1i P 1 2 = 10 4 2
13 2cn 2
14 2ne0 2 0
15 6 7 13 14 divassi 10 4 2 = 10 4 2
16 4d2e2 4 2 = 2
17 16 oveq2i 10 4 2 = 10 2
18 2nn0 2 0
19 18 dec0u 10 2 = 20
20 17 19 eqtri 10 4 2 = 20
21 15 20 eqtri 10 4 2 = 20
22 12 21 eqtri P 1 2 = 20