Step |
Hyp |
Ref |
Expression |
1 |
|
41prothprm.p |
|- P = ; 4 1 |
2 |
|
dfdec10 |
|- ; 4 1 = ( ( ; 1 0 x. 4 ) + 1 ) |
3 |
1 2
|
eqtri |
|- P = ( ( ; 1 0 x. 4 ) + 1 ) |
4 |
3
|
oveq1i |
|- ( P - 1 ) = ( ( ( ; 1 0 x. 4 ) + 1 ) - 1 ) |
5 |
|
10nn |
|- ; 1 0 e. NN |
6 |
5
|
nncni |
|- ; 1 0 e. CC |
7 |
|
4cn |
|- 4 e. CC |
8 |
6 7
|
mulcli |
|- ( ; 1 0 x. 4 ) e. CC |
9 |
|
pncan1 |
|- ( ( ; 1 0 x. 4 ) e. CC -> ( ( ( ; 1 0 x. 4 ) + 1 ) - 1 ) = ( ; 1 0 x. 4 ) ) |
10 |
8 9
|
ax-mp |
|- ( ( ( ; 1 0 x. 4 ) + 1 ) - 1 ) = ( ; 1 0 x. 4 ) |
11 |
4 10
|
eqtri |
|- ( P - 1 ) = ( ; 1 0 x. 4 ) |
12 |
11
|
oveq1i |
|- ( ( P - 1 ) / 2 ) = ( ( ; 1 0 x. 4 ) / 2 ) |
13 |
|
2cn |
|- 2 e. CC |
14 |
|
2ne0 |
|- 2 =/= 0 |
15 |
6 7 13 14
|
divassi |
|- ( ( ; 1 0 x. 4 ) / 2 ) = ( ; 1 0 x. ( 4 / 2 ) ) |
16 |
|
4d2e2 |
|- ( 4 / 2 ) = 2 |
17 |
16
|
oveq2i |
|- ( ; 1 0 x. ( 4 / 2 ) ) = ( ; 1 0 x. 2 ) |
18 |
|
2nn0 |
|- 2 e. NN0 |
19 |
18
|
dec0u |
|- ( ; 1 0 x. 2 ) = ; 2 0 |
20 |
17 19
|
eqtri |
|- ( ; 1 0 x. ( 4 / 2 ) ) = ; 2 0 |
21 |
15 20
|
eqtri |
|- ( ( ; 1 0 x. 4 ) / 2 ) = ; 2 0 |
22 |
12 21
|
eqtri |
|- ( ( P - 1 ) / 2 ) = ; 2 0 |