Step |
Hyp |
Ref |
Expression |
1 |
|
41prothprm.p |
|- P = ; 4 1 |
2 |
1
|
41prothprmlem2 |
|- ( ( 3 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) |
3 |
|
dfdec10 |
|- ; 4 1 = ( ( ; 1 0 x. 4 ) + 1 ) |
4 |
|
4t2e8 |
|- ( 4 x. 2 ) = 8 |
5 |
|
4cn |
|- 4 e. CC |
6 |
|
2cn |
|- 2 e. CC |
7 |
5 6
|
mulcomi |
|- ( 4 x. 2 ) = ( 2 x. 4 ) |
8 |
4 7
|
eqtr3i |
|- 8 = ( 2 x. 4 ) |
9 |
8
|
oveq2i |
|- ( 5 x. 8 ) = ( 5 x. ( 2 x. 4 ) ) |
10 |
|
5cn |
|- 5 e. CC |
11 |
10 6 5
|
mulassi |
|- ( ( 5 x. 2 ) x. 4 ) = ( 5 x. ( 2 x. 4 ) ) |
12 |
|
5t2e10 |
|- ( 5 x. 2 ) = ; 1 0 |
13 |
12
|
oveq1i |
|- ( ( 5 x. 2 ) x. 4 ) = ( ; 1 0 x. 4 ) |
14 |
9 11 13
|
3eqtr2i |
|- ( 5 x. 8 ) = ( ; 1 0 x. 4 ) |
15 |
|
cu2 |
|- ( 2 ^ 3 ) = 8 |
16 |
15
|
eqcomi |
|- 8 = ( 2 ^ 3 ) |
17 |
16
|
oveq2i |
|- ( 5 x. 8 ) = ( 5 x. ( 2 ^ 3 ) ) |
18 |
14 17
|
eqtr3i |
|- ( ; 1 0 x. 4 ) = ( 5 x. ( 2 ^ 3 ) ) |
19 |
18
|
oveq1i |
|- ( ( ; 1 0 x. 4 ) + 1 ) = ( ( 5 x. ( 2 ^ 3 ) ) + 1 ) |
20 |
1 3 19
|
3eqtri |
|- P = ( ( 5 x. ( 2 ^ 3 ) ) + 1 ) |
21 |
|
simpr |
|- ( ( ( ( 3 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) /\ P = ( ( 5 x. ( 2 ^ 3 ) ) + 1 ) ) -> P = ( ( 5 x. ( 2 ^ 3 ) ) + 1 ) ) |
22 |
|
3nn |
|- 3 e. NN |
23 |
22
|
a1i |
|- ( ( ( ( 3 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) /\ P = ( ( 5 x. ( 2 ^ 3 ) ) + 1 ) ) -> 3 e. NN ) |
24 |
|
5nn |
|- 5 e. NN |
25 |
24
|
a1i |
|- ( ( ( ( 3 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) /\ P = ( ( 5 x. ( 2 ^ 3 ) ) + 1 ) ) -> 5 e. NN ) |
26 |
|
5lt8 |
|- 5 < 8 |
27 |
26 15
|
breqtrri |
|- 5 < ( 2 ^ 3 ) |
28 |
27
|
a1i |
|- ( ( ( ( 3 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) /\ P = ( ( 5 x. ( 2 ^ 3 ) ) + 1 ) ) -> 5 < ( 2 ^ 3 ) ) |
29 |
|
3z |
|- 3 e. ZZ |
30 |
29
|
a1i |
|- ( ( ( 3 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) -> 3 e. ZZ ) |
31 |
|
oveq1 |
|- ( x = 3 -> ( x ^ ( ( P - 1 ) / 2 ) ) = ( 3 ^ ( ( P - 1 ) / 2 ) ) ) |
32 |
31
|
oveq1d |
|- ( x = 3 -> ( ( x ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( ( 3 ^ ( ( P - 1 ) / 2 ) ) mod P ) ) |
33 |
32
|
eqeq1d |
|- ( x = 3 -> ( ( ( x ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) <-> ( ( 3 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) ) ) |
34 |
33
|
adantl |
|- ( ( ( ( 3 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) /\ x = 3 ) -> ( ( ( x ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) <-> ( ( 3 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) ) ) |
35 |
|
id |
|- ( ( ( 3 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) -> ( ( 3 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) ) |
36 |
30 34 35
|
rspcedvd |
|- ( ( ( 3 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) -> E. x e. ZZ ( ( x ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) ) |
37 |
36
|
adantr |
|- ( ( ( ( 3 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) /\ P = ( ( 5 x. ( 2 ^ 3 ) ) + 1 ) ) -> E. x e. ZZ ( ( x ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) ) |
38 |
23 25 21 28 37
|
proththd |
|- ( ( ( ( 3 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) /\ P = ( ( 5 x. ( 2 ^ 3 ) ) + 1 ) ) -> P e. Prime ) |
39 |
21 38
|
jca |
|- ( ( ( ( 3 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) /\ P = ( ( 5 x. ( 2 ^ 3 ) ) + 1 ) ) -> ( P = ( ( 5 x. ( 2 ^ 3 ) ) + 1 ) /\ P e. Prime ) ) |
40 |
2 20 39
|
mp2an |
|- ( P = ( ( 5 x. ( 2 ^ 3 ) ) + 1 ) /\ P e. Prime ) |