| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 41prothprm.p |  |-  P = ; 4 1 | 
						
							| 2 | 1 | 41prothprmlem2 |  |-  ( ( 3 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) | 
						
							| 3 |  | dfdec10 |  |-  ; 4 1 = ( ( ; 1 0 x. 4 ) + 1 ) | 
						
							| 4 |  | 4t2e8 |  |-  ( 4 x. 2 ) = 8 | 
						
							| 5 |  | 4cn |  |-  4 e. CC | 
						
							| 6 |  | 2cn |  |-  2 e. CC | 
						
							| 7 | 5 6 | mulcomi |  |-  ( 4 x. 2 ) = ( 2 x. 4 ) | 
						
							| 8 | 4 7 | eqtr3i |  |-  8 = ( 2 x. 4 ) | 
						
							| 9 | 8 | oveq2i |  |-  ( 5 x. 8 ) = ( 5 x. ( 2 x. 4 ) ) | 
						
							| 10 |  | 5cn |  |-  5 e. CC | 
						
							| 11 | 10 6 5 | mulassi |  |-  ( ( 5 x. 2 ) x. 4 ) = ( 5 x. ( 2 x. 4 ) ) | 
						
							| 12 |  | 5t2e10 |  |-  ( 5 x. 2 ) = ; 1 0 | 
						
							| 13 | 12 | oveq1i |  |-  ( ( 5 x. 2 ) x. 4 ) = ( ; 1 0 x. 4 ) | 
						
							| 14 | 9 11 13 | 3eqtr2i |  |-  ( 5 x. 8 ) = ( ; 1 0 x. 4 ) | 
						
							| 15 |  | cu2 |  |-  ( 2 ^ 3 ) = 8 | 
						
							| 16 | 15 | eqcomi |  |-  8 = ( 2 ^ 3 ) | 
						
							| 17 | 16 | oveq2i |  |-  ( 5 x. 8 ) = ( 5 x. ( 2 ^ 3 ) ) | 
						
							| 18 | 14 17 | eqtr3i |  |-  ( ; 1 0 x. 4 ) = ( 5 x. ( 2 ^ 3 ) ) | 
						
							| 19 | 18 | oveq1i |  |-  ( ( ; 1 0 x. 4 ) + 1 ) = ( ( 5 x. ( 2 ^ 3 ) ) + 1 ) | 
						
							| 20 | 1 3 19 | 3eqtri |  |-  P = ( ( 5 x. ( 2 ^ 3 ) ) + 1 ) | 
						
							| 21 |  | simpr |  |-  ( ( ( ( 3 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) /\ P = ( ( 5 x. ( 2 ^ 3 ) ) + 1 ) ) -> P = ( ( 5 x. ( 2 ^ 3 ) ) + 1 ) ) | 
						
							| 22 |  | 3nn |  |-  3 e. NN | 
						
							| 23 | 22 | a1i |  |-  ( ( ( ( 3 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) /\ P = ( ( 5 x. ( 2 ^ 3 ) ) + 1 ) ) -> 3 e. NN ) | 
						
							| 24 |  | 5nn |  |-  5 e. NN | 
						
							| 25 | 24 | a1i |  |-  ( ( ( ( 3 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) /\ P = ( ( 5 x. ( 2 ^ 3 ) ) + 1 ) ) -> 5 e. NN ) | 
						
							| 26 |  | 5lt8 |  |-  5 < 8 | 
						
							| 27 | 26 15 | breqtrri |  |-  5 < ( 2 ^ 3 ) | 
						
							| 28 | 27 | a1i |  |-  ( ( ( ( 3 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) /\ P = ( ( 5 x. ( 2 ^ 3 ) ) + 1 ) ) -> 5 < ( 2 ^ 3 ) ) | 
						
							| 29 |  | 3z |  |-  3 e. ZZ | 
						
							| 30 | 29 | a1i |  |-  ( ( ( 3 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) -> 3 e. ZZ ) | 
						
							| 31 |  | oveq1 |  |-  ( x = 3 -> ( x ^ ( ( P - 1 ) / 2 ) ) = ( 3 ^ ( ( P - 1 ) / 2 ) ) ) | 
						
							| 32 | 31 | oveq1d |  |-  ( x = 3 -> ( ( x ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( ( 3 ^ ( ( P - 1 ) / 2 ) ) mod P ) ) | 
						
							| 33 | 32 | eqeq1d |  |-  ( x = 3 -> ( ( ( x ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) <-> ( ( 3 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) ) ) | 
						
							| 34 | 33 | adantl |  |-  ( ( ( ( 3 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) /\ x = 3 ) -> ( ( ( x ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) <-> ( ( 3 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) ) ) | 
						
							| 35 |  | id |  |-  ( ( ( 3 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) -> ( ( 3 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) ) | 
						
							| 36 | 30 34 35 | rspcedvd |  |-  ( ( ( 3 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) -> E. x e. ZZ ( ( x ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) ) | 
						
							| 37 | 36 | adantr |  |-  ( ( ( ( 3 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) /\ P = ( ( 5 x. ( 2 ^ 3 ) ) + 1 ) ) -> E. x e. ZZ ( ( x ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) ) | 
						
							| 38 | 23 25 21 28 37 | proththd |  |-  ( ( ( ( 3 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) /\ P = ( ( 5 x. ( 2 ^ 3 ) ) + 1 ) ) -> P e. Prime ) | 
						
							| 39 | 21 38 | jca |  |-  ( ( ( ( 3 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) /\ P = ( ( 5 x. ( 2 ^ 3 ) ) + 1 ) ) -> ( P = ( ( 5 x. ( 2 ^ 3 ) ) + 1 ) /\ P e. Prime ) ) | 
						
							| 40 | 2 20 39 | mp2an |  |-  ( P = ( ( 5 x. ( 2 ^ 3 ) ) + 1 ) /\ P e. Prime ) |