| Step |
Hyp |
Ref |
Expression |
| 1 |
|
proththd.n |
|- ( ph -> N e. NN ) |
| 2 |
|
proththd.k |
|- ( ph -> K e. NN ) |
| 3 |
|
proththd.p |
|- ( ph -> P = ( ( K x. ( 2 ^ N ) ) + 1 ) ) |
| 4 |
|
proththd.l |
|- ( ph -> K < ( 2 ^ N ) ) |
| 5 |
|
proththd.x |
|- ( ph -> E. x e. ZZ ( ( x ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) ) |
| 6 |
|
2nn |
|- 2 e. NN |
| 7 |
6
|
a1i |
|- ( ph -> 2 e. NN ) |
| 8 |
1
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
| 9 |
7 8
|
nnexpcld |
|- ( ph -> ( 2 ^ N ) e. NN ) |
| 10 |
2
|
nncnd |
|- ( ph -> K e. CC ) |
| 11 |
9
|
nncnd |
|- ( ph -> ( 2 ^ N ) e. CC ) |
| 12 |
10 11
|
mulcomd |
|- ( ph -> ( K x. ( 2 ^ N ) ) = ( ( 2 ^ N ) x. K ) ) |
| 13 |
12
|
oveq1d |
|- ( ph -> ( ( K x. ( 2 ^ N ) ) + 1 ) = ( ( ( 2 ^ N ) x. K ) + 1 ) ) |
| 14 |
3 13
|
eqtrd |
|- ( ph -> P = ( ( ( 2 ^ N ) x. K ) + 1 ) ) |
| 15 |
|
simpr |
|- ( ( ph /\ p e. Prime ) -> p e. Prime ) |
| 16 |
|
2prm |
|- 2 e. Prime |
| 17 |
16
|
a1i |
|- ( ( ph /\ p e. Prime ) -> 2 e. Prime ) |
| 18 |
1
|
adantr |
|- ( ( ph /\ p e. Prime ) -> N e. NN ) |
| 19 |
|
prmdvdsexpb |
|- ( ( p e. Prime /\ 2 e. Prime /\ N e. NN ) -> ( p || ( 2 ^ N ) <-> p = 2 ) ) |
| 20 |
15 17 18 19
|
syl3anc |
|- ( ( ph /\ p e. Prime ) -> ( p || ( 2 ^ N ) <-> p = 2 ) ) |
| 21 |
1 2 3
|
proththdlem |
|- ( ph -> ( P e. NN /\ 1 < P /\ ( ( P - 1 ) / 2 ) e. NN ) ) |
| 22 |
21
|
simp1d |
|- ( ph -> P e. NN ) |
| 23 |
22
|
nncnd |
|- ( ph -> P e. CC ) |
| 24 |
|
peano2cnm |
|- ( P e. CC -> ( P - 1 ) e. CC ) |
| 25 |
23 24
|
syl |
|- ( ph -> ( P - 1 ) e. CC ) |
| 26 |
25
|
adantr |
|- ( ( ph /\ x e. ZZ ) -> ( P - 1 ) e. CC ) |
| 27 |
|
2cnd |
|- ( ( ph /\ x e. ZZ ) -> 2 e. CC ) |
| 28 |
|
2ne0 |
|- 2 =/= 0 |
| 29 |
28
|
a1i |
|- ( ( ph /\ x e. ZZ ) -> 2 =/= 0 ) |
| 30 |
26 27 29
|
divcan1d |
|- ( ( ph /\ x e. ZZ ) -> ( ( ( P - 1 ) / 2 ) x. 2 ) = ( P - 1 ) ) |
| 31 |
30
|
eqcomd |
|- ( ( ph /\ x e. ZZ ) -> ( P - 1 ) = ( ( ( P - 1 ) / 2 ) x. 2 ) ) |
| 32 |
31
|
oveq2d |
|- ( ( ph /\ x e. ZZ ) -> ( x ^ ( P - 1 ) ) = ( x ^ ( ( ( P - 1 ) / 2 ) x. 2 ) ) ) |
| 33 |
|
zcn |
|- ( x e. ZZ -> x e. CC ) |
| 34 |
33
|
adantl |
|- ( ( ph /\ x e. ZZ ) -> x e. CC ) |
| 35 |
|
2nn0 |
|- 2 e. NN0 |
| 36 |
35
|
a1i |
|- ( ( ph /\ x e. ZZ ) -> 2 e. NN0 ) |
| 37 |
21
|
simp3d |
|- ( ph -> ( ( P - 1 ) / 2 ) e. NN ) |
| 38 |
37
|
nnnn0d |
|- ( ph -> ( ( P - 1 ) / 2 ) e. NN0 ) |
| 39 |
38
|
adantr |
|- ( ( ph /\ x e. ZZ ) -> ( ( P - 1 ) / 2 ) e. NN0 ) |
| 40 |
34 36 39
|
expmuld |
|- ( ( ph /\ x e. ZZ ) -> ( x ^ ( ( ( P - 1 ) / 2 ) x. 2 ) ) = ( ( x ^ ( ( P - 1 ) / 2 ) ) ^ 2 ) ) |
| 41 |
32 40
|
eqtrd |
|- ( ( ph /\ x e. ZZ ) -> ( x ^ ( P - 1 ) ) = ( ( x ^ ( ( P - 1 ) / 2 ) ) ^ 2 ) ) |
| 42 |
41
|
ad4ant13 |
|- ( ( ( ( ph /\ p = 2 ) /\ x e. ZZ ) /\ ( ( x ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) ) -> ( x ^ ( P - 1 ) ) = ( ( x ^ ( ( P - 1 ) / 2 ) ) ^ 2 ) ) |
| 43 |
42
|
oveq1d |
|- ( ( ( ( ph /\ p = 2 ) /\ x e. ZZ ) /\ ( ( x ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) ) -> ( ( x ^ ( P - 1 ) ) mod P ) = ( ( ( x ^ ( ( P - 1 ) / 2 ) ) ^ 2 ) mod P ) ) |
| 44 |
38
|
adantr |
|- ( ( ph /\ p = 2 ) -> ( ( P - 1 ) / 2 ) e. NN0 ) |
| 45 |
44
|
anim1i |
|- ( ( ( ph /\ p = 2 ) /\ x e. ZZ ) -> ( ( ( P - 1 ) / 2 ) e. NN0 /\ x e. ZZ ) ) |
| 46 |
45
|
ancomd |
|- ( ( ( ph /\ p = 2 ) /\ x e. ZZ ) -> ( x e. ZZ /\ ( ( P - 1 ) / 2 ) e. NN0 ) ) |
| 47 |
|
zexpcl |
|- ( ( x e. ZZ /\ ( ( P - 1 ) / 2 ) e. NN0 ) -> ( x ^ ( ( P - 1 ) / 2 ) ) e. ZZ ) |
| 48 |
46 47
|
syl |
|- ( ( ( ph /\ p = 2 ) /\ x e. ZZ ) -> ( x ^ ( ( P - 1 ) / 2 ) ) e. ZZ ) |
| 49 |
48
|
adantr |
|- ( ( ( ( ph /\ p = 2 ) /\ x e. ZZ ) /\ ( ( x ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) ) -> ( x ^ ( ( P - 1 ) / 2 ) ) e. ZZ ) |
| 50 |
22
|
nnrpd |
|- ( ph -> P e. RR+ ) |
| 51 |
50
|
ad3antrrr |
|- ( ( ( ( ph /\ p = 2 ) /\ x e. ZZ ) /\ ( ( x ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) ) -> P e. RR+ ) |
| 52 |
21
|
simp2d |
|- ( ph -> 1 < P ) |
| 53 |
52
|
ad3antrrr |
|- ( ( ( ( ph /\ p = 2 ) /\ x e. ZZ ) /\ ( ( x ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) ) -> 1 < P ) |
| 54 |
|
simpr |
|- ( ( ( ( ph /\ p = 2 ) /\ x e. ZZ ) /\ ( ( x ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) ) -> ( ( x ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) ) |
| 55 |
49 51 53 54
|
modexp2m1d |
|- ( ( ( ( ph /\ p = 2 ) /\ x e. ZZ ) /\ ( ( x ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) ) -> ( ( ( x ^ ( ( P - 1 ) / 2 ) ) ^ 2 ) mod P ) = 1 ) |
| 56 |
43 55
|
eqtrd |
|- ( ( ( ( ph /\ p = 2 ) /\ x e. ZZ ) /\ ( ( x ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) ) -> ( ( x ^ ( P - 1 ) ) mod P ) = 1 ) |
| 57 |
|
oveq2 |
|- ( p = 2 -> ( ( P - 1 ) / p ) = ( ( P - 1 ) / 2 ) ) |
| 58 |
57
|
eleq1d |
|- ( p = 2 -> ( ( ( P - 1 ) / p ) e. NN0 <-> ( ( P - 1 ) / 2 ) e. NN0 ) ) |
| 59 |
58
|
adantl |
|- ( ( ph /\ p = 2 ) -> ( ( ( P - 1 ) / p ) e. NN0 <-> ( ( P - 1 ) / 2 ) e. NN0 ) ) |
| 60 |
44 59
|
mpbird |
|- ( ( ph /\ p = 2 ) -> ( ( P - 1 ) / p ) e. NN0 ) |
| 61 |
60
|
anim2i |
|- ( ( x e. ZZ /\ ( ph /\ p = 2 ) ) -> ( x e. ZZ /\ ( ( P - 1 ) / p ) e. NN0 ) ) |
| 62 |
61
|
ancoms |
|- ( ( ( ph /\ p = 2 ) /\ x e. ZZ ) -> ( x e. ZZ /\ ( ( P - 1 ) / p ) e. NN0 ) ) |
| 63 |
|
zexpcl |
|- ( ( x e. ZZ /\ ( ( P - 1 ) / p ) e. NN0 ) -> ( x ^ ( ( P - 1 ) / p ) ) e. ZZ ) |
| 64 |
62 63
|
syl |
|- ( ( ( ph /\ p = 2 ) /\ x e. ZZ ) -> ( x ^ ( ( P - 1 ) / p ) ) e. ZZ ) |
| 65 |
64
|
zred |
|- ( ( ( ph /\ p = 2 ) /\ x e. ZZ ) -> ( x ^ ( ( P - 1 ) / p ) ) e. RR ) |
| 66 |
65
|
adantr |
|- ( ( ( ( ph /\ p = 2 ) /\ x e. ZZ ) /\ ( ( x ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) ) -> ( x ^ ( ( P - 1 ) / p ) ) e. RR ) |
| 67 |
|
1red |
|- ( ( ( ( ph /\ p = 2 ) /\ x e. ZZ ) /\ ( ( x ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) ) -> 1 e. RR ) |
| 68 |
67
|
renegcld |
|- ( ( ( ( ph /\ p = 2 ) /\ x e. ZZ ) /\ ( ( x ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) ) -> -u 1 e. RR ) |
| 69 |
|
oveq2 |
|- ( 2 = p -> ( ( P - 1 ) / 2 ) = ( ( P - 1 ) / p ) ) |
| 70 |
69
|
eqcoms |
|- ( p = 2 -> ( ( P - 1 ) / 2 ) = ( ( P - 1 ) / p ) ) |
| 71 |
70
|
oveq2d |
|- ( p = 2 -> ( x ^ ( ( P - 1 ) / 2 ) ) = ( x ^ ( ( P - 1 ) / p ) ) ) |
| 72 |
71
|
oveq1d |
|- ( p = 2 -> ( ( x ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( ( x ^ ( ( P - 1 ) / p ) ) mod P ) ) |
| 73 |
72
|
eqeq1d |
|- ( p = 2 -> ( ( ( x ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) <-> ( ( x ^ ( ( P - 1 ) / p ) ) mod P ) = ( -u 1 mod P ) ) ) |
| 74 |
73
|
adantl |
|- ( ( ph /\ p = 2 ) -> ( ( ( x ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) <-> ( ( x ^ ( ( P - 1 ) / p ) ) mod P ) = ( -u 1 mod P ) ) ) |
| 75 |
74
|
adantr |
|- ( ( ( ph /\ p = 2 ) /\ x e. ZZ ) -> ( ( ( x ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) <-> ( ( x ^ ( ( P - 1 ) / p ) ) mod P ) = ( -u 1 mod P ) ) ) |
| 76 |
75
|
biimpa |
|- ( ( ( ( ph /\ p = 2 ) /\ x e. ZZ ) /\ ( ( x ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) ) -> ( ( x ^ ( ( P - 1 ) / p ) ) mod P ) = ( -u 1 mod P ) ) |
| 77 |
|
eqidd |
|- ( ( ( ( ph /\ p = 2 ) /\ x e. ZZ ) /\ ( ( x ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) ) -> ( 1 mod P ) = ( 1 mod P ) ) |
| 78 |
66 68 67 67 51 76 77
|
modsub12d |
|- ( ( ( ( ph /\ p = 2 ) /\ x e. ZZ ) /\ ( ( x ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) ) -> ( ( ( x ^ ( ( P - 1 ) / p ) ) - 1 ) mod P ) = ( ( -u 1 - 1 ) mod P ) ) |
| 79 |
78
|
oveq1d |
|- ( ( ( ( ph /\ p = 2 ) /\ x e. ZZ ) /\ ( ( x ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) ) -> ( ( ( ( x ^ ( ( P - 1 ) / p ) ) - 1 ) mod P ) gcd P ) = ( ( ( -u 1 - 1 ) mod P ) gcd P ) ) |
| 80 |
|
peano2zm |
|- ( ( x ^ ( ( P - 1 ) / p ) ) e. ZZ -> ( ( x ^ ( ( P - 1 ) / p ) ) - 1 ) e. ZZ ) |
| 81 |
64 80
|
syl |
|- ( ( ( ph /\ p = 2 ) /\ x e. ZZ ) -> ( ( x ^ ( ( P - 1 ) / p ) ) - 1 ) e. ZZ ) |
| 82 |
22
|
ad2antrr |
|- ( ( ( ph /\ p = 2 ) /\ x e. ZZ ) -> P e. NN ) |
| 83 |
|
modgcd |
|- ( ( ( ( x ^ ( ( P - 1 ) / p ) ) - 1 ) e. ZZ /\ P e. NN ) -> ( ( ( ( x ^ ( ( P - 1 ) / p ) ) - 1 ) mod P ) gcd P ) = ( ( ( x ^ ( ( P - 1 ) / p ) ) - 1 ) gcd P ) ) |
| 84 |
81 82 83
|
syl2anc |
|- ( ( ( ph /\ p = 2 ) /\ x e. ZZ ) -> ( ( ( ( x ^ ( ( P - 1 ) / p ) ) - 1 ) mod P ) gcd P ) = ( ( ( x ^ ( ( P - 1 ) / p ) ) - 1 ) gcd P ) ) |
| 85 |
84
|
adantr |
|- ( ( ( ( ph /\ p = 2 ) /\ x e. ZZ ) /\ ( ( x ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) ) -> ( ( ( ( x ^ ( ( P - 1 ) / p ) ) - 1 ) mod P ) gcd P ) = ( ( ( x ^ ( ( P - 1 ) / p ) ) - 1 ) gcd P ) ) |
| 86 |
|
ax-1cn |
|- 1 e. CC |
| 87 |
|
negdi2 |
|- ( ( 1 e. CC /\ 1 e. CC ) -> -u ( 1 + 1 ) = ( -u 1 - 1 ) ) |
| 88 |
87
|
eqcomd |
|- ( ( 1 e. CC /\ 1 e. CC ) -> ( -u 1 - 1 ) = -u ( 1 + 1 ) ) |
| 89 |
86 86 88
|
mp2an |
|- ( -u 1 - 1 ) = -u ( 1 + 1 ) |
| 90 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
| 91 |
90
|
negeqi |
|- -u ( 1 + 1 ) = -u 2 |
| 92 |
89 91
|
eqtri |
|- ( -u 1 - 1 ) = -u 2 |
| 93 |
92
|
a1i |
|- ( ph -> ( -u 1 - 1 ) = -u 2 ) |
| 94 |
93
|
oveq1d |
|- ( ph -> ( ( -u 1 - 1 ) mod P ) = ( -u 2 mod P ) ) |
| 95 |
94
|
oveq1d |
|- ( ph -> ( ( ( -u 1 - 1 ) mod P ) gcd P ) = ( ( -u 2 mod P ) gcd P ) ) |
| 96 |
|
nnnegz |
|- ( 2 e. NN -> -u 2 e. ZZ ) |
| 97 |
7 96
|
syl |
|- ( ph -> -u 2 e. ZZ ) |
| 98 |
|
modgcd |
|- ( ( -u 2 e. ZZ /\ P e. NN ) -> ( ( -u 2 mod P ) gcd P ) = ( -u 2 gcd P ) ) |
| 99 |
97 22 98
|
syl2anc |
|- ( ph -> ( ( -u 2 mod P ) gcd P ) = ( -u 2 gcd P ) ) |
| 100 |
|
2z |
|- 2 e. ZZ |
| 101 |
22
|
nnzd |
|- ( ph -> P e. ZZ ) |
| 102 |
|
neggcd |
|- ( ( 2 e. ZZ /\ P e. ZZ ) -> ( -u 2 gcd P ) = ( 2 gcd P ) ) |
| 103 |
100 101 102
|
sylancr |
|- ( ph -> ( -u 2 gcd P ) = ( 2 gcd P ) ) |
| 104 |
|
nnz |
|- ( P e. NN -> P e. ZZ ) |
| 105 |
|
oddm1d2 |
|- ( P e. ZZ -> ( -. 2 || P <-> ( ( P - 1 ) / 2 ) e. ZZ ) ) |
| 106 |
104 105
|
syl |
|- ( P e. NN -> ( -. 2 || P <-> ( ( P - 1 ) / 2 ) e. ZZ ) ) |
| 107 |
106
|
biimprd |
|- ( P e. NN -> ( ( ( P - 1 ) / 2 ) e. ZZ -> -. 2 || P ) ) |
| 108 |
|
nnz |
|- ( ( ( P - 1 ) / 2 ) e. NN -> ( ( P - 1 ) / 2 ) e. ZZ ) |
| 109 |
107 108
|
impel |
|- ( ( P e. NN /\ ( ( P - 1 ) / 2 ) e. NN ) -> -. 2 || P ) |
| 110 |
|
isoddgcd1 |
|- ( P e. ZZ -> ( -. 2 || P <-> ( 2 gcd P ) = 1 ) ) |
| 111 |
104 110
|
syl |
|- ( P e. NN -> ( -. 2 || P <-> ( 2 gcd P ) = 1 ) ) |
| 112 |
111
|
adantr |
|- ( ( P e. NN /\ ( ( P - 1 ) / 2 ) e. NN ) -> ( -. 2 || P <-> ( 2 gcd P ) = 1 ) ) |
| 113 |
109 112
|
mpbid |
|- ( ( P e. NN /\ ( ( P - 1 ) / 2 ) e. NN ) -> ( 2 gcd P ) = 1 ) |
| 114 |
113
|
3adant2 |
|- ( ( P e. NN /\ 1 < P /\ ( ( P - 1 ) / 2 ) e. NN ) -> ( 2 gcd P ) = 1 ) |
| 115 |
21 114
|
syl |
|- ( ph -> ( 2 gcd P ) = 1 ) |
| 116 |
103 115
|
eqtrd |
|- ( ph -> ( -u 2 gcd P ) = 1 ) |
| 117 |
99 116
|
eqtrd |
|- ( ph -> ( ( -u 2 mod P ) gcd P ) = 1 ) |
| 118 |
95 117
|
eqtrd |
|- ( ph -> ( ( ( -u 1 - 1 ) mod P ) gcd P ) = 1 ) |
| 119 |
118
|
ad3antrrr |
|- ( ( ( ( ph /\ p = 2 ) /\ x e. ZZ ) /\ ( ( x ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) ) -> ( ( ( -u 1 - 1 ) mod P ) gcd P ) = 1 ) |
| 120 |
79 85 119
|
3eqtr3d |
|- ( ( ( ( ph /\ p = 2 ) /\ x e. ZZ ) /\ ( ( x ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) ) -> ( ( ( x ^ ( ( P - 1 ) / p ) ) - 1 ) gcd P ) = 1 ) |
| 121 |
56 120
|
jca |
|- ( ( ( ( ph /\ p = 2 ) /\ x e. ZZ ) /\ ( ( x ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) ) -> ( ( ( x ^ ( P - 1 ) ) mod P ) = 1 /\ ( ( ( x ^ ( ( P - 1 ) / p ) ) - 1 ) gcd P ) = 1 ) ) |
| 122 |
121
|
ex |
|- ( ( ( ph /\ p = 2 ) /\ x e. ZZ ) -> ( ( ( x ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) -> ( ( ( x ^ ( P - 1 ) ) mod P ) = 1 /\ ( ( ( x ^ ( ( P - 1 ) / p ) ) - 1 ) gcd P ) = 1 ) ) ) |
| 123 |
122
|
reximdva |
|- ( ( ph /\ p = 2 ) -> ( E. x e. ZZ ( ( x ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) -> E. x e. ZZ ( ( ( x ^ ( P - 1 ) ) mod P ) = 1 /\ ( ( ( x ^ ( ( P - 1 ) / p ) ) - 1 ) gcd P ) = 1 ) ) ) |
| 124 |
123
|
ex |
|- ( ph -> ( p = 2 -> ( E. x e. ZZ ( ( x ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) -> E. x e. ZZ ( ( ( x ^ ( P - 1 ) ) mod P ) = 1 /\ ( ( ( x ^ ( ( P - 1 ) / p ) ) - 1 ) gcd P ) = 1 ) ) ) ) |
| 125 |
5 124
|
mpid |
|- ( ph -> ( p = 2 -> E. x e. ZZ ( ( ( x ^ ( P - 1 ) ) mod P ) = 1 /\ ( ( ( x ^ ( ( P - 1 ) / p ) ) - 1 ) gcd P ) = 1 ) ) ) |
| 126 |
125
|
adantr |
|- ( ( ph /\ p e. Prime ) -> ( p = 2 -> E. x e. ZZ ( ( ( x ^ ( P - 1 ) ) mod P ) = 1 /\ ( ( ( x ^ ( ( P - 1 ) / p ) ) - 1 ) gcd P ) = 1 ) ) ) |
| 127 |
20 126
|
sylbid |
|- ( ( ph /\ p e. Prime ) -> ( p || ( 2 ^ N ) -> E. x e. ZZ ( ( ( x ^ ( P - 1 ) ) mod P ) = 1 /\ ( ( ( x ^ ( ( P - 1 ) / p ) ) - 1 ) gcd P ) = 1 ) ) ) |
| 128 |
127
|
ralrimiva |
|- ( ph -> A. p e. Prime ( p || ( 2 ^ N ) -> E. x e. ZZ ( ( ( x ^ ( P - 1 ) ) mod P ) = 1 /\ ( ( ( x ^ ( ( P - 1 ) / p ) ) - 1 ) gcd P ) = 1 ) ) ) |
| 129 |
9 2 4 14 128
|
pockthg |
|- ( ph -> P e. Prime ) |