| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmz |
|- ( Q e. Prime -> Q e. ZZ ) |
| 2 |
|
prmdvdsexp |
|- ( ( P e. Prime /\ Q e. ZZ /\ N e. NN ) -> ( P || ( Q ^ N ) <-> P || Q ) ) |
| 3 |
1 2
|
syl3an2 |
|- ( ( P e. Prime /\ Q e. Prime /\ N e. NN ) -> ( P || ( Q ^ N ) <-> P || Q ) ) |
| 4 |
|
prmuz2 |
|- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
| 5 |
|
dvdsprm |
|- ( ( P e. ( ZZ>= ` 2 ) /\ Q e. Prime ) -> ( P || Q <-> P = Q ) ) |
| 6 |
4 5
|
sylan |
|- ( ( P e. Prime /\ Q e. Prime ) -> ( P || Q <-> P = Q ) ) |
| 7 |
6
|
3adant3 |
|- ( ( P e. Prime /\ Q e. Prime /\ N e. NN ) -> ( P || Q <-> P = Q ) ) |
| 8 |
3 7
|
bitrd |
|- ( ( P e. Prime /\ Q e. Prime /\ N e. NN ) -> ( P || ( Q ^ N ) <-> P = Q ) ) |