Step |
Hyp |
Ref |
Expression |
1 |
|
modexp2m1d.a |
|- ( ph -> A e. ZZ ) |
2 |
|
modexp2m1d.e |
|- ( ph -> E e. RR+ ) |
3 |
|
modexp2m1d.g |
|- ( ph -> 1 < E ) |
4 |
|
modexp2m1d.m |
|- ( ph -> ( A mod E ) = ( -u 1 mod E ) ) |
5 |
1
|
zcnd |
|- ( ph -> A e. CC ) |
6 |
5
|
sqvald |
|- ( ph -> ( A ^ 2 ) = ( A x. A ) ) |
7 |
6
|
oveq1d |
|- ( ph -> ( ( A ^ 2 ) mod E ) = ( ( A x. A ) mod E ) ) |
8 |
|
neg1z |
|- -u 1 e. ZZ |
9 |
8
|
a1i |
|- ( ph -> -u 1 e. ZZ ) |
10 |
1 9 1 9 2 4 4
|
modmul12d |
|- ( ph -> ( ( A x. A ) mod E ) = ( ( -u 1 x. -u 1 ) mod E ) ) |
11 |
7 10
|
eqtrd |
|- ( ph -> ( ( A ^ 2 ) mod E ) = ( ( -u 1 x. -u 1 ) mod E ) ) |
12 |
|
neg1mulneg1e1 |
|- ( -u 1 x. -u 1 ) = 1 |
13 |
12
|
a1i |
|- ( ph -> ( -u 1 x. -u 1 ) = 1 ) |
14 |
13
|
oveq1d |
|- ( ph -> ( ( -u 1 x. -u 1 ) mod E ) = ( 1 mod E ) ) |
15 |
2
|
rpred |
|- ( ph -> E e. RR ) |
16 |
|
1mod |
|- ( ( E e. RR /\ 1 < E ) -> ( 1 mod E ) = 1 ) |
17 |
15 3 16
|
syl2anc |
|- ( ph -> ( 1 mod E ) = 1 ) |
18 |
14 17
|
eqtrd |
|- ( ph -> ( ( -u 1 x. -u 1 ) mod E ) = 1 ) |
19 |
11 18
|
eqtrd |
|- ( ph -> ( ( A ^ 2 ) mod E ) = 1 ) |