| Step | Hyp | Ref | Expression | 
						
							| 1 |  | modexp2m1d.a |  |-  ( ph -> A e. ZZ ) | 
						
							| 2 |  | modexp2m1d.e |  |-  ( ph -> E e. RR+ ) | 
						
							| 3 |  | modexp2m1d.g |  |-  ( ph -> 1 < E ) | 
						
							| 4 |  | modexp2m1d.m |  |-  ( ph -> ( A mod E ) = ( -u 1 mod E ) ) | 
						
							| 5 | 1 | zcnd |  |-  ( ph -> A e. CC ) | 
						
							| 6 | 5 | sqvald |  |-  ( ph -> ( A ^ 2 ) = ( A x. A ) ) | 
						
							| 7 | 6 | oveq1d |  |-  ( ph -> ( ( A ^ 2 ) mod E ) = ( ( A x. A ) mod E ) ) | 
						
							| 8 |  | neg1z |  |-  -u 1 e. ZZ | 
						
							| 9 | 8 | a1i |  |-  ( ph -> -u 1 e. ZZ ) | 
						
							| 10 | 1 9 1 9 2 4 4 | modmul12d |  |-  ( ph -> ( ( A x. A ) mod E ) = ( ( -u 1 x. -u 1 ) mod E ) ) | 
						
							| 11 | 7 10 | eqtrd |  |-  ( ph -> ( ( A ^ 2 ) mod E ) = ( ( -u 1 x. -u 1 ) mod E ) ) | 
						
							| 12 |  | neg1mulneg1e1 |  |-  ( -u 1 x. -u 1 ) = 1 | 
						
							| 13 | 12 | a1i |  |-  ( ph -> ( -u 1 x. -u 1 ) = 1 ) | 
						
							| 14 | 13 | oveq1d |  |-  ( ph -> ( ( -u 1 x. -u 1 ) mod E ) = ( 1 mod E ) ) | 
						
							| 15 | 2 | rpred |  |-  ( ph -> E e. RR ) | 
						
							| 16 |  | 1mod |  |-  ( ( E e. RR /\ 1 < E ) -> ( 1 mod E ) = 1 ) | 
						
							| 17 | 15 3 16 | syl2anc |  |-  ( ph -> ( 1 mod E ) = 1 ) | 
						
							| 18 | 14 17 | eqtrd |  |-  ( ph -> ( ( -u 1 x. -u 1 ) mod E ) = 1 ) | 
						
							| 19 | 11 18 | eqtrd |  |-  ( ph -> ( ( A ^ 2 ) mod E ) = 1 ) |