| Step | Hyp | Ref | Expression | 
						
							| 1 |  | proththd.n |  |-  ( ph -> N e. NN ) | 
						
							| 2 |  | proththd.k |  |-  ( ph -> K e. NN ) | 
						
							| 3 |  | proththd.p |  |-  ( ph -> P = ( ( K x. ( 2 ^ N ) ) + 1 ) ) | 
						
							| 4 |  | 2nn |  |-  2 e. NN | 
						
							| 5 | 4 | a1i |  |-  ( ph -> 2 e. NN ) | 
						
							| 6 | 1 | nnnn0d |  |-  ( ph -> N e. NN0 ) | 
						
							| 7 | 5 6 | nnexpcld |  |-  ( ph -> ( 2 ^ N ) e. NN ) | 
						
							| 8 | 2 7 | nnmulcld |  |-  ( ph -> ( K x. ( 2 ^ N ) ) e. NN ) | 
						
							| 9 | 8 | peano2nnd |  |-  ( ph -> ( ( K x. ( 2 ^ N ) ) + 1 ) e. NN ) | 
						
							| 10 |  | 1m1e0 |  |-  ( 1 - 1 ) = 0 | 
						
							| 11 | 8 | nngt0d |  |-  ( ph -> 0 < ( K x. ( 2 ^ N ) ) ) | 
						
							| 12 | 10 11 | eqbrtrid |  |-  ( ph -> ( 1 - 1 ) < ( K x. ( 2 ^ N ) ) ) | 
						
							| 13 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 14 | 8 | nnred |  |-  ( ph -> ( K x. ( 2 ^ N ) ) e. RR ) | 
						
							| 15 | 13 13 14 | ltsubaddd |  |-  ( ph -> ( ( 1 - 1 ) < ( K x. ( 2 ^ N ) ) <-> 1 < ( ( K x. ( 2 ^ N ) ) + 1 ) ) ) | 
						
							| 16 | 12 15 | mpbid |  |-  ( ph -> 1 < ( ( K x. ( 2 ^ N ) ) + 1 ) ) | 
						
							| 17 | 8 | nncnd |  |-  ( ph -> ( K x. ( 2 ^ N ) ) e. CC ) | 
						
							| 18 |  | pncan1 |  |-  ( ( K x. ( 2 ^ N ) ) e. CC -> ( ( ( K x. ( 2 ^ N ) ) + 1 ) - 1 ) = ( K x. ( 2 ^ N ) ) ) | 
						
							| 19 | 17 18 | syl |  |-  ( ph -> ( ( ( K x. ( 2 ^ N ) ) + 1 ) - 1 ) = ( K x. ( 2 ^ N ) ) ) | 
						
							| 20 | 19 | oveq1d |  |-  ( ph -> ( ( ( ( K x. ( 2 ^ N ) ) + 1 ) - 1 ) / 2 ) = ( ( K x. ( 2 ^ N ) ) / 2 ) ) | 
						
							| 21 |  | 2z |  |-  2 e. ZZ | 
						
							| 22 | 21 | a1i |  |-  ( ph -> 2 e. ZZ ) | 
						
							| 23 | 2 | nnzd |  |-  ( ph -> K e. ZZ ) | 
						
							| 24 | 7 | nnzd |  |-  ( ph -> ( 2 ^ N ) e. ZZ ) | 
						
							| 25 | 22 23 24 | 3jca |  |-  ( ph -> ( 2 e. ZZ /\ K e. ZZ /\ ( 2 ^ N ) e. ZZ ) ) | 
						
							| 26 |  | iddvdsexp |  |-  ( ( 2 e. ZZ /\ N e. NN ) -> 2 || ( 2 ^ N ) ) | 
						
							| 27 | 22 1 26 | syl2anc |  |-  ( ph -> 2 || ( 2 ^ N ) ) | 
						
							| 28 |  | dvdsmultr2 |  |-  ( ( 2 e. ZZ /\ K e. ZZ /\ ( 2 ^ N ) e. ZZ ) -> ( 2 || ( 2 ^ N ) -> 2 || ( K x. ( 2 ^ N ) ) ) ) | 
						
							| 29 | 25 27 28 | sylc |  |-  ( ph -> 2 || ( K x. ( 2 ^ N ) ) ) | 
						
							| 30 |  | nndivdvds |  |-  ( ( ( K x. ( 2 ^ N ) ) e. NN /\ 2 e. NN ) -> ( 2 || ( K x. ( 2 ^ N ) ) <-> ( ( K x. ( 2 ^ N ) ) / 2 ) e. NN ) ) | 
						
							| 31 | 8 5 30 | syl2anc |  |-  ( ph -> ( 2 || ( K x. ( 2 ^ N ) ) <-> ( ( K x. ( 2 ^ N ) ) / 2 ) e. NN ) ) | 
						
							| 32 | 29 31 | mpbid |  |-  ( ph -> ( ( K x. ( 2 ^ N ) ) / 2 ) e. NN ) | 
						
							| 33 | 20 32 | eqeltrd |  |-  ( ph -> ( ( ( ( K x. ( 2 ^ N ) ) + 1 ) - 1 ) / 2 ) e. NN ) | 
						
							| 34 | 9 16 33 | 3jca |  |-  ( ph -> ( ( ( K x. ( 2 ^ N ) ) + 1 ) e. NN /\ 1 < ( ( K x. ( 2 ^ N ) ) + 1 ) /\ ( ( ( ( K x. ( 2 ^ N ) ) + 1 ) - 1 ) / 2 ) e. NN ) ) | 
						
							| 35 |  | eleq1 |  |-  ( P = ( ( K x. ( 2 ^ N ) ) + 1 ) -> ( P e. NN <-> ( ( K x. ( 2 ^ N ) ) + 1 ) e. NN ) ) | 
						
							| 36 |  | breq2 |  |-  ( P = ( ( K x. ( 2 ^ N ) ) + 1 ) -> ( 1 < P <-> 1 < ( ( K x. ( 2 ^ N ) ) + 1 ) ) ) | 
						
							| 37 |  | oveq1 |  |-  ( P = ( ( K x. ( 2 ^ N ) ) + 1 ) -> ( P - 1 ) = ( ( ( K x. ( 2 ^ N ) ) + 1 ) - 1 ) ) | 
						
							| 38 | 37 | oveq1d |  |-  ( P = ( ( K x. ( 2 ^ N ) ) + 1 ) -> ( ( P - 1 ) / 2 ) = ( ( ( ( K x. ( 2 ^ N ) ) + 1 ) - 1 ) / 2 ) ) | 
						
							| 39 | 38 | eleq1d |  |-  ( P = ( ( K x. ( 2 ^ N ) ) + 1 ) -> ( ( ( P - 1 ) / 2 ) e. NN <-> ( ( ( ( K x. ( 2 ^ N ) ) + 1 ) - 1 ) / 2 ) e. NN ) ) | 
						
							| 40 | 35 36 39 | 3anbi123d |  |-  ( P = ( ( K x. ( 2 ^ N ) ) + 1 ) -> ( ( P e. NN /\ 1 < P /\ ( ( P - 1 ) / 2 ) e. NN ) <-> ( ( ( K x. ( 2 ^ N ) ) + 1 ) e. NN /\ 1 < ( ( K x. ( 2 ^ N ) ) + 1 ) /\ ( ( ( ( K x. ( 2 ^ N ) ) + 1 ) - 1 ) / 2 ) e. NN ) ) ) | 
						
							| 41 | 34 40 | syl5ibrcom |  |-  ( ph -> ( P = ( ( K x. ( 2 ^ N ) ) + 1 ) -> ( P e. NN /\ 1 < P /\ ( ( P - 1 ) / 2 ) e. NN ) ) ) | 
						
							| 42 | 3 41 | mpd |  |-  ( ph -> ( P e. NN /\ 1 < P /\ ( ( P - 1 ) / 2 ) e. NN ) ) |