Step |
Hyp |
Ref |
Expression |
1 |
|
proththd.n |
|- ( ph -> N e. NN ) |
2 |
|
proththd.k |
|- ( ph -> K e. NN ) |
3 |
|
proththd.p |
|- ( ph -> P = ( ( K x. ( 2 ^ N ) ) + 1 ) ) |
4 |
|
2nn |
|- 2 e. NN |
5 |
4
|
a1i |
|- ( ph -> 2 e. NN ) |
6 |
1
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
7 |
5 6
|
nnexpcld |
|- ( ph -> ( 2 ^ N ) e. NN ) |
8 |
2 7
|
nnmulcld |
|- ( ph -> ( K x. ( 2 ^ N ) ) e. NN ) |
9 |
8
|
peano2nnd |
|- ( ph -> ( ( K x. ( 2 ^ N ) ) + 1 ) e. NN ) |
10 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
11 |
8
|
nngt0d |
|- ( ph -> 0 < ( K x. ( 2 ^ N ) ) ) |
12 |
10 11
|
eqbrtrid |
|- ( ph -> ( 1 - 1 ) < ( K x. ( 2 ^ N ) ) ) |
13 |
|
1red |
|- ( ph -> 1 e. RR ) |
14 |
8
|
nnred |
|- ( ph -> ( K x. ( 2 ^ N ) ) e. RR ) |
15 |
13 13 14
|
ltsubaddd |
|- ( ph -> ( ( 1 - 1 ) < ( K x. ( 2 ^ N ) ) <-> 1 < ( ( K x. ( 2 ^ N ) ) + 1 ) ) ) |
16 |
12 15
|
mpbid |
|- ( ph -> 1 < ( ( K x. ( 2 ^ N ) ) + 1 ) ) |
17 |
8
|
nncnd |
|- ( ph -> ( K x. ( 2 ^ N ) ) e. CC ) |
18 |
|
pncan1 |
|- ( ( K x. ( 2 ^ N ) ) e. CC -> ( ( ( K x. ( 2 ^ N ) ) + 1 ) - 1 ) = ( K x. ( 2 ^ N ) ) ) |
19 |
17 18
|
syl |
|- ( ph -> ( ( ( K x. ( 2 ^ N ) ) + 1 ) - 1 ) = ( K x. ( 2 ^ N ) ) ) |
20 |
19
|
oveq1d |
|- ( ph -> ( ( ( ( K x. ( 2 ^ N ) ) + 1 ) - 1 ) / 2 ) = ( ( K x. ( 2 ^ N ) ) / 2 ) ) |
21 |
|
2z |
|- 2 e. ZZ |
22 |
21
|
a1i |
|- ( ph -> 2 e. ZZ ) |
23 |
2
|
nnzd |
|- ( ph -> K e. ZZ ) |
24 |
7
|
nnzd |
|- ( ph -> ( 2 ^ N ) e. ZZ ) |
25 |
22 23 24
|
3jca |
|- ( ph -> ( 2 e. ZZ /\ K e. ZZ /\ ( 2 ^ N ) e. ZZ ) ) |
26 |
|
iddvdsexp |
|- ( ( 2 e. ZZ /\ N e. NN ) -> 2 || ( 2 ^ N ) ) |
27 |
22 1 26
|
syl2anc |
|- ( ph -> 2 || ( 2 ^ N ) ) |
28 |
|
dvdsmultr2 |
|- ( ( 2 e. ZZ /\ K e. ZZ /\ ( 2 ^ N ) e. ZZ ) -> ( 2 || ( 2 ^ N ) -> 2 || ( K x. ( 2 ^ N ) ) ) ) |
29 |
25 27 28
|
sylc |
|- ( ph -> 2 || ( K x. ( 2 ^ N ) ) ) |
30 |
|
nndivdvds |
|- ( ( ( K x. ( 2 ^ N ) ) e. NN /\ 2 e. NN ) -> ( 2 || ( K x. ( 2 ^ N ) ) <-> ( ( K x. ( 2 ^ N ) ) / 2 ) e. NN ) ) |
31 |
8 5 30
|
syl2anc |
|- ( ph -> ( 2 || ( K x. ( 2 ^ N ) ) <-> ( ( K x. ( 2 ^ N ) ) / 2 ) e. NN ) ) |
32 |
29 31
|
mpbid |
|- ( ph -> ( ( K x. ( 2 ^ N ) ) / 2 ) e. NN ) |
33 |
20 32
|
eqeltrd |
|- ( ph -> ( ( ( ( K x. ( 2 ^ N ) ) + 1 ) - 1 ) / 2 ) e. NN ) |
34 |
9 16 33
|
3jca |
|- ( ph -> ( ( ( K x. ( 2 ^ N ) ) + 1 ) e. NN /\ 1 < ( ( K x. ( 2 ^ N ) ) + 1 ) /\ ( ( ( ( K x. ( 2 ^ N ) ) + 1 ) - 1 ) / 2 ) e. NN ) ) |
35 |
|
eleq1 |
|- ( P = ( ( K x. ( 2 ^ N ) ) + 1 ) -> ( P e. NN <-> ( ( K x. ( 2 ^ N ) ) + 1 ) e. NN ) ) |
36 |
|
breq2 |
|- ( P = ( ( K x. ( 2 ^ N ) ) + 1 ) -> ( 1 < P <-> 1 < ( ( K x. ( 2 ^ N ) ) + 1 ) ) ) |
37 |
|
oveq1 |
|- ( P = ( ( K x. ( 2 ^ N ) ) + 1 ) -> ( P - 1 ) = ( ( ( K x. ( 2 ^ N ) ) + 1 ) - 1 ) ) |
38 |
37
|
oveq1d |
|- ( P = ( ( K x. ( 2 ^ N ) ) + 1 ) -> ( ( P - 1 ) / 2 ) = ( ( ( ( K x. ( 2 ^ N ) ) + 1 ) - 1 ) / 2 ) ) |
39 |
38
|
eleq1d |
|- ( P = ( ( K x. ( 2 ^ N ) ) + 1 ) -> ( ( ( P - 1 ) / 2 ) e. NN <-> ( ( ( ( K x. ( 2 ^ N ) ) + 1 ) - 1 ) / 2 ) e. NN ) ) |
40 |
35 36 39
|
3anbi123d |
|- ( P = ( ( K x. ( 2 ^ N ) ) + 1 ) -> ( ( P e. NN /\ 1 < P /\ ( ( P - 1 ) / 2 ) e. NN ) <-> ( ( ( K x. ( 2 ^ N ) ) + 1 ) e. NN /\ 1 < ( ( K x. ( 2 ^ N ) ) + 1 ) /\ ( ( ( ( K x. ( 2 ^ N ) ) + 1 ) - 1 ) / 2 ) e. NN ) ) ) |
41 |
34 40
|
syl5ibrcom |
|- ( ph -> ( P = ( ( K x. ( 2 ^ N ) ) + 1 ) -> ( P e. NN /\ 1 < P /\ ( ( P - 1 ) / 2 ) e. NN ) ) ) |
42 |
3 41
|
mpd |
|- ( ph -> ( P e. NN /\ 1 < P /\ ( ( P - 1 ) / 2 ) e. NN ) ) |