| Step | Hyp | Ref | Expression | 
						
							| 1 |  | modexp2m1d.a | ⊢ ( 𝜑  →  𝐴  ∈  ℤ ) | 
						
							| 2 |  | modexp2m1d.e | ⊢ ( 𝜑  →  𝐸  ∈  ℝ+ ) | 
						
							| 3 |  | modexp2m1d.g | ⊢ ( 𝜑  →  1  <  𝐸 ) | 
						
							| 4 |  | modexp2m1d.m | ⊢ ( 𝜑  →  ( 𝐴  mod  𝐸 )  =  ( - 1  mod  𝐸 ) ) | 
						
							| 5 | 1 | zcnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 6 | 5 | sqvald | ⊢ ( 𝜑  →  ( 𝐴 ↑ 2 )  =  ( 𝐴  ·  𝐴 ) ) | 
						
							| 7 | 6 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐴 ↑ 2 )  mod  𝐸 )  =  ( ( 𝐴  ·  𝐴 )  mod  𝐸 ) ) | 
						
							| 8 |  | neg1z | ⊢ - 1  ∈  ℤ | 
						
							| 9 | 8 | a1i | ⊢ ( 𝜑  →  - 1  ∈  ℤ ) | 
						
							| 10 | 1 9 1 9 2 4 4 | modmul12d | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝐴 )  mod  𝐸 )  =  ( ( - 1  ·  - 1 )  mod  𝐸 ) ) | 
						
							| 11 | 7 10 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐴 ↑ 2 )  mod  𝐸 )  =  ( ( - 1  ·  - 1 )  mod  𝐸 ) ) | 
						
							| 12 |  | neg1mulneg1e1 | ⊢ ( - 1  ·  - 1 )  =  1 | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  ( - 1  ·  - 1 )  =  1 ) | 
						
							| 14 | 13 | oveq1d | ⊢ ( 𝜑  →  ( ( - 1  ·  - 1 )  mod  𝐸 )  =  ( 1  mod  𝐸 ) ) | 
						
							| 15 | 2 | rpred | ⊢ ( 𝜑  →  𝐸  ∈  ℝ ) | 
						
							| 16 |  | 1mod | ⊢ ( ( 𝐸  ∈  ℝ  ∧  1  <  𝐸 )  →  ( 1  mod  𝐸 )  =  1 ) | 
						
							| 17 | 15 3 16 | syl2anc | ⊢ ( 𝜑  →  ( 1  mod  𝐸 )  =  1 ) | 
						
							| 18 | 14 17 | eqtrd | ⊢ ( 𝜑  →  ( ( - 1  ·  - 1 )  mod  𝐸 )  =  1 ) | 
						
							| 19 | 11 18 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐴 ↑ 2 )  mod  𝐸 )  =  1 ) |