| Step | Hyp | Ref | Expression | 
						
							| 1 |  | proththd.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 2 |  | proththd.k | ⊢ ( 𝜑  →  𝐾  ∈  ℕ ) | 
						
							| 3 |  | proththd.p | ⊢ ( 𝜑  →  𝑃  =  ( ( 𝐾  ·  ( 2 ↑ 𝑁 ) )  +  1 ) ) | 
						
							| 4 |  | proththd.l | ⊢ ( 𝜑  →  𝐾  <  ( 2 ↑ 𝑁 ) ) | 
						
							| 5 |  | proththd.x | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℤ ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) | 
						
							| 6 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 7 | 6 | a1i | ⊢ ( 𝜑  →  2  ∈  ℕ ) | 
						
							| 8 | 1 | nnnn0d | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 9 | 7 8 | nnexpcld | ⊢ ( 𝜑  →  ( 2 ↑ 𝑁 )  ∈  ℕ ) | 
						
							| 10 | 2 | nncnd | ⊢ ( 𝜑  →  𝐾  ∈  ℂ ) | 
						
							| 11 | 9 | nncnd | ⊢ ( 𝜑  →  ( 2 ↑ 𝑁 )  ∈  ℂ ) | 
						
							| 12 | 10 11 | mulcomd | ⊢ ( 𝜑  →  ( 𝐾  ·  ( 2 ↑ 𝑁 ) )  =  ( ( 2 ↑ 𝑁 )  ·  𝐾 ) ) | 
						
							| 13 | 12 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐾  ·  ( 2 ↑ 𝑁 ) )  +  1 )  =  ( ( ( 2 ↑ 𝑁 )  ·  𝐾 )  +  1 ) ) | 
						
							| 14 | 3 13 | eqtrd | ⊢ ( 𝜑  →  𝑃  =  ( ( ( 2 ↑ 𝑁 )  ·  𝐾 )  +  1 ) ) | 
						
							| 15 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  𝑝  ∈  ℙ ) | 
						
							| 16 |  | 2prm | ⊢ 2  ∈  ℙ | 
						
							| 17 | 16 | a1i | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  2  ∈  ℙ ) | 
						
							| 18 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  𝑁  ∈  ℕ ) | 
						
							| 19 |  | prmdvdsexpb | ⊢ ( ( 𝑝  ∈  ℙ  ∧  2  ∈  ℙ  ∧  𝑁  ∈  ℕ )  →  ( 𝑝  ∥  ( 2 ↑ 𝑁 )  ↔  𝑝  =  2 ) ) | 
						
							| 20 | 15 17 18 19 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( 𝑝  ∥  ( 2 ↑ 𝑁 )  ↔  𝑝  =  2 ) ) | 
						
							| 21 | 1 2 3 | proththdlem | ⊢ ( 𝜑  →  ( 𝑃  ∈  ℕ  ∧  1  <  𝑃  ∧  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ ) ) | 
						
							| 22 | 21 | simp1d | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 23 | 22 | nncnd | ⊢ ( 𝜑  →  𝑃  ∈  ℂ ) | 
						
							| 24 |  | peano2cnm | ⊢ ( 𝑃  ∈  ℂ  →  ( 𝑃  −  1 )  ∈  ℂ ) | 
						
							| 25 | 23 24 | syl | ⊢ ( 𝜑  →  ( 𝑃  −  1 )  ∈  ℂ ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℤ )  →  ( 𝑃  −  1 )  ∈  ℂ ) | 
						
							| 27 |  | 2cnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℤ )  →  2  ∈  ℂ ) | 
						
							| 28 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 29 | 28 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℤ )  →  2  ≠  0 ) | 
						
							| 30 | 26 27 29 | divcan1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℤ )  →  ( ( ( 𝑃  −  1 )  /  2 )  ·  2 )  =  ( 𝑃  −  1 ) ) | 
						
							| 31 | 30 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℤ )  →  ( 𝑃  −  1 )  =  ( ( ( 𝑃  −  1 )  /  2 )  ·  2 ) ) | 
						
							| 32 | 31 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℤ )  →  ( 𝑥 ↑ ( 𝑃  −  1 ) )  =  ( 𝑥 ↑ ( ( ( 𝑃  −  1 )  /  2 )  ·  2 ) ) ) | 
						
							| 33 |  | zcn | ⊢ ( 𝑥  ∈  ℤ  →  𝑥  ∈  ℂ ) | 
						
							| 34 | 33 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℤ )  →  𝑥  ∈  ℂ ) | 
						
							| 35 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 36 | 35 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℤ )  →  2  ∈  ℕ0 ) | 
						
							| 37 | 21 | simp3d | ⊢ ( 𝜑  →  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ ) | 
						
							| 38 | 37 | nnnn0d | ⊢ ( 𝜑  →  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ0 ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℤ )  →  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ0 ) | 
						
							| 40 | 34 36 39 | expmuld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℤ )  →  ( 𝑥 ↑ ( ( ( 𝑃  −  1 )  /  2 )  ·  2 ) )  =  ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) ) ↑ 2 ) ) | 
						
							| 41 | 32 40 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℤ )  →  ( 𝑥 ↑ ( 𝑃  −  1 ) )  =  ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) ) ↑ 2 ) ) | 
						
							| 42 | 41 | ad4ant13 | ⊢ ( ( ( ( 𝜑  ∧  𝑝  =  2 )  ∧  𝑥  ∈  ℤ )  ∧  ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) )  →  ( 𝑥 ↑ ( 𝑃  −  1 ) )  =  ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) ) ↑ 2 ) ) | 
						
							| 43 | 42 | oveq1d | ⊢ ( ( ( ( 𝜑  ∧  𝑝  =  2 )  ∧  𝑥  ∈  ℤ )  ∧  ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) )  →  ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  mod  𝑃 )  =  ( ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) ) ↑ 2 )  mod  𝑃 ) ) | 
						
							| 44 | 38 | adantr | ⊢ ( ( 𝜑  ∧  𝑝  =  2 )  →  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ0 ) | 
						
							| 45 | 44 | anim1i | ⊢ ( ( ( 𝜑  ∧  𝑝  =  2 )  ∧  𝑥  ∈  ℤ )  →  ( ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ0  ∧  𝑥  ∈  ℤ ) ) | 
						
							| 46 | 45 | ancomd | ⊢ ( ( ( 𝜑  ∧  𝑝  =  2 )  ∧  𝑥  ∈  ℤ )  →  ( 𝑥  ∈  ℤ  ∧  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ0 ) ) | 
						
							| 47 |  | zexpcl | ⊢ ( ( 𝑥  ∈  ℤ  ∧  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ0 )  →  ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) )  ∈  ℤ ) | 
						
							| 48 | 46 47 | syl | ⊢ ( ( ( 𝜑  ∧  𝑝  =  2 )  ∧  𝑥  ∈  ℤ )  →  ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) )  ∈  ℤ ) | 
						
							| 49 | 48 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑝  =  2 )  ∧  𝑥  ∈  ℤ )  ∧  ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) )  →  ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) )  ∈  ℤ ) | 
						
							| 50 | 22 | nnrpd | ⊢ ( 𝜑  →  𝑃  ∈  ℝ+ ) | 
						
							| 51 | 50 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑝  =  2 )  ∧  𝑥  ∈  ℤ )  ∧  ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) )  →  𝑃  ∈  ℝ+ ) | 
						
							| 52 | 21 | simp2d | ⊢ ( 𝜑  →  1  <  𝑃 ) | 
						
							| 53 | 52 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑝  =  2 )  ∧  𝑥  ∈  ℤ )  ∧  ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) )  →  1  <  𝑃 ) | 
						
							| 54 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑝  =  2 )  ∧  𝑥  ∈  ℤ )  ∧  ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) )  →  ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) | 
						
							| 55 | 49 51 53 54 | modexp2m1d | ⊢ ( ( ( ( 𝜑  ∧  𝑝  =  2 )  ∧  𝑥  ∈  ℤ )  ∧  ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) )  →  ( ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) ) ↑ 2 )  mod  𝑃 )  =  1 ) | 
						
							| 56 | 43 55 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑝  =  2 )  ∧  𝑥  ∈  ℤ )  ∧  ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) )  →  ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  mod  𝑃 )  =  1 ) | 
						
							| 57 |  | oveq2 | ⊢ ( 𝑝  =  2  →  ( ( 𝑃  −  1 )  /  𝑝 )  =  ( ( 𝑃  −  1 )  /  2 ) ) | 
						
							| 58 | 57 | eleq1d | ⊢ ( 𝑝  =  2  →  ( ( ( 𝑃  −  1 )  /  𝑝 )  ∈  ℕ0  ↔  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ0 ) ) | 
						
							| 59 | 58 | adantl | ⊢ ( ( 𝜑  ∧  𝑝  =  2 )  →  ( ( ( 𝑃  −  1 )  /  𝑝 )  ∈  ℕ0  ↔  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ0 ) ) | 
						
							| 60 | 44 59 | mpbird | ⊢ ( ( 𝜑  ∧  𝑝  =  2 )  →  ( ( 𝑃  −  1 )  /  𝑝 )  ∈  ℕ0 ) | 
						
							| 61 | 60 | anim2i | ⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 𝜑  ∧  𝑝  =  2 ) )  →  ( 𝑥  ∈  ℤ  ∧  ( ( 𝑃  −  1 )  /  𝑝 )  ∈  ℕ0 ) ) | 
						
							| 62 | 61 | ancoms | ⊢ ( ( ( 𝜑  ∧  𝑝  =  2 )  ∧  𝑥  ∈  ℤ )  →  ( 𝑥  ∈  ℤ  ∧  ( ( 𝑃  −  1 )  /  𝑝 )  ∈  ℕ0 ) ) | 
						
							| 63 |  | zexpcl | ⊢ ( ( 𝑥  ∈  ℤ  ∧  ( ( 𝑃  −  1 )  /  𝑝 )  ∈  ℕ0 )  →  ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  𝑝 ) )  ∈  ℤ ) | 
						
							| 64 | 62 63 | syl | ⊢ ( ( ( 𝜑  ∧  𝑝  =  2 )  ∧  𝑥  ∈  ℤ )  →  ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  𝑝 ) )  ∈  ℤ ) | 
						
							| 65 | 64 | zred | ⊢ ( ( ( 𝜑  ∧  𝑝  =  2 )  ∧  𝑥  ∈  ℤ )  →  ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  𝑝 ) )  ∈  ℝ ) | 
						
							| 66 | 65 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑝  =  2 )  ∧  𝑥  ∈  ℤ )  ∧  ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) )  →  ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  𝑝 ) )  ∈  ℝ ) | 
						
							| 67 |  | 1red | ⊢ ( ( ( ( 𝜑  ∧  𝑝  =  2 )  ∧  𝑥  ∈  ℤ )  ∧  ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) )  →  1  ∈  ℝ ) | 
						
							| 68 | 67 | renegcld | ⊢ ( ( ( ( 𝜑  ∧  𝑝  =  2 )  ∧  𝑥  ∈  ℤ )  ∧  ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) )  →  - 1  ∈  ℝ ) | 
						
							| 69 |  | oveq2 | ⊢ ( 2  =  𝑝  →  ( ( 𝑃  −  1 )  /  2 )  =  ( ( 𝑃  −  1 )  /  𝑝 ) ) | 
						
							| 70 | 69 | eqcoms | ⊢ ( 𝑝  =  2  →  ( ( 𝑃  −  1 )  /  2 )  =  ( ( 𝑃  −  1 )  /  𝑝 ) ) | 
						
							| 71 | 70 | oveq2d | ⊢ ( 𝑝  =  2  →  ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) )  =  ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  𝑝 ) ) ) | 
						
							| 72 | 71 | oveq1d | ⊢ ( 𝑝  =  2  →  ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  𝑝 ) )  mod  𝑃 ) ) | 
						
							| 73 | 72 | eqeq1d | ⊢ ( 𝑝  =  2  →  ( ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 )  ↔  ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  𝑝 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) ) | 
						
							| 74 | 73 | adantl | ⊢ ( ( 𝜑  ∧  𝑝  =  2 )  →  ( ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 )  ↔  ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  𝑝 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) ) | 
						
							| 75 | 74 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑝  =  2 )  ∧  𝑥  ∈  ℤ )  →  ( ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 )  ↔  ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  𝑝 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) ) | 
						
							| 76 | 75 | biimpa | ⊢ ( ( ( ( 𝜑  ∧  𝑝  =  2 )  ∧  𝑥  ∈  ℤ )  ∧  ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) )  →  ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  𝑝 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) | 
						
							| 77 |  | eqidd | ⊢ ( ( ( ( 𝜑  ∧  𝑝  =  2 )  ∧  𝑥  ∈  ℤ )  ∧  ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) )  →  ( 1  mod  𝑃 )  =  ( 1  mod  𝑃 ) ) | 
						
							| 78 | 66 68 67 67 51 76 77 | modsub12d | ⊢ ( ( ( ( 𝜑  ∧  𝑝  =  2 )  ∧  𝑥  ∈  ℤ )  ∧  ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) )  →  ( ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  𝑝 ) )  −  1 )  mod  𝑃 )  =  ( ( - 1  −  1 )  mod  𝑃 ) ) | 
						
							| 79 | 78 | oveq1d | ⊢ ( ( ( ( 𝜑  ∧  𝑝  =  2 )  ∧  𝑥  ∈  ℤ )  ∧  ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) )  →  ( ( ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  𝑝 ) )  −  1 )  mod  𝑃 )  gcd  𝑃 )  =  ( ( ( - 1  −  1 )  mod  𝑃 )  gcd  𝑃 ) ) | 
						
							| 80 |  | peano2zm | ⊢ ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  𝑝 ) )  ∈  ℤ  →  ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  𝑝 ) )  −  1 )  ∈  ℤ ) | 
						
							| 81 | 64 80 | syl | ⊢ ( ( ( 𝜑  ∧  𝑝  =  2 )  ∧  𝑥  ∈  ℤ )  →  ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  𝑝 ) )  −  1 )  ∈  ℤ ) | 
						
							| 82 | 22 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑝  =  2 )  ∧  𝑥  ∈  ℤ )  →  𝑃  ∈  ℕ ) | 
						
							| 83 |  | modgcd | ⊢ ( ( ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  𝑝 ) )  −  1 )  ∈  ℤ  ∧  𝑃  ∈  ℕ )  →  ( ( ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  𝑝 ) )  −  1 )  mod  𝑃 )  gcd  𝑃 )  =  ( ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  𝑝 ) )  −  1 )  gcd  𝑃 ) ) | 
						
							| 84 | 81 82 83 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑝  =  2 )  ∧  𝑥  ∈  ℤ )  →  ( ( ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  𝑝 ) )  −  1 )  mod  𝑃 )  gcd  𝑃 )  =  ( ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  𝑝 ) )  −  1 )  gcd  𝑃 ) ) | 
						
							| 85 | 84 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑝  =  2 )  ∧  𝑥  ∈  ℤ )  ∧  ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) )  →  ( ( ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  𝑝 ) )  −  1 )  mod  𝑃 )  gcd  𝑃 )  =  ( ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  𝑝 ) )  −  1 )  gcd  𝑃 ) ) | 
						
							| 86 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 87 |  | negdi2 | ⊢ ( ( 1  ∈  ℂ  ∧  1  ∈  ℂ )  →  - ( 1  +  1 )  =  ( - 1  −  1 ) ) | 
						
							| 88 | 87 | eqcomd | ⊢ ( ( 1  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( - 1  −  1 )  =  - ( 1  +  1 ) ) | 
						
							| 89 | 86 86 88 | mp2an | ⊢ ( - 1  −  1 )  =  - ( 1  +  1 ) | 
						
							| 90 |  | 1p1e2 | ⊢ ( 1  +  1 )  =  2 | 
						
							| 91 | 90 | negeqi | ⊢ - ( 1  +  1 )  =  - 2 | 
						
							| 92 | 89 91 | eqtri | ⊢ ( - 1  −  1 )  =  - 2 | 
						
							| 93 | 92 | a1i | ⊢ ( 𝜑  →  ( - 1  −  1 )  =  - 2 ) | 
						
							| 94 | 93 | oveq1d | ⊢ ( 𝜑  →  ( ( - 1  −  1 )  mod  𝑃 )  =  ( - 2  mod  𝑃 ) ) | 
						
							| 95 | 94 | oveq1d | ⊢ ( 𝜑  →  ( ( ( - 1  −  1 )  mod  𝑃 )  gcd  𝑃 )  =  ( ( - 2  mod  𝑃 )  gcd  𝑃 ) ) | 
						
							| 96 |  | nnnegz | ⊢ ( 2  ∈  ℕ  →  - 2  ∈  ℤ ) | 
						
							| 97 | 7 96 | syl | ⊢ ( 𝜑  →  - 2  ∈  ℤ ) | 
						
							| 98 |  | modgcd | ⊢ ( ( - 2  ∈  ℤ  ∧  𝑃  ∈  ℕ )  →  ( ( - 2  mod  𝑃 )  gcd  𝑃 )  =  ( - 2  gcd  𝑃 ) ) | 
						
							| 99 | 97 22 98 | syl2anc | ⊢ ( 𝜑  →  ( ( - 2  mod  𝑃 )  gcd  𝑃 )  =  ( - 2  gcd  𝑃 ) ) | 
						
							| 100 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 101 | 22 | nnzd | ⊢ ( 𝜑  →  𝑃  ∈  ℤ ) | 
						
							| 102 |  | neggcd | ⊢ ( ( 2  ∈  ℤ  ∧  𝑃  ∈  ℤ )  →  ( - 2  gcd  𝑃 )  =  ( 2  gcd  𝑃 ) ) | 
						
							| 103 | 100 101 102 | sylancr | ⊢ ( 𝜑  →  ( - 2  gcd  𝑃 )  =  ( 2  gcd  𝑃 ) ) | 
						
							| 104 |  | nnz | ⊢ ( 𝑃  ∈  ℕ  →  𝑃  ∈  ℤ ) | 
						
							| 105 |  | oddm1d2 | ⊢ ( 𝑃  ∈  ℤ  →  ( ¬  2  ∥  𝑃  ↔  ( ( 𝑃  −  1 )  /  2 )  ∈  ℤ ) ) | 
						
							| 106 | 104 105 | syl | ⊢ ( 𝑃  ∈  ℕ  →  ( ¬  2  ∥  𝑃  ↔  ( ( 𝑃  −  1 )  /  2 )  ∈  ℤ ) ) | 
						
							| 107 | 106 | biimprd | ⊢ ( 𝑃  ∈  ℕ  →  ( ( ( 𝑃  −  1 )  /  2 )  ∈  ℤ  →  ¬  2  ∥  𝑃 ) ) | 
						
							| 108 |  | nnz | ⊢ ( ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ  →  ( ( 𝑃  −  1 )  /  2 )  ∈  ℤ ) | 
						
							| 109 | 107 108 | impel | ⊢ ( ( 𝑃  ∈  ℕ  ∧  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ )  →  ¬  2  ∥  𝑃 ) | 
						
							| 110 |  | isoddgcd1 | ⊢ ( 𝑃  ∈  ℤ  →  ( ¬  2  ∥  𝑃  ↔  ( 2  gcd  𝑃 )  =  1 ) ) | 
						
							| 111 | 104 110 | syl | ⊢ ( 𝑃  ∈  ℕ  →  ( ¬  2  ∥  𝑃  ↔  ( 2  gcd  𝑃 )  =  1 ) ) | 
						
							| 112 | 111 | adantr | ⊢ ( ( 𝑃  ∈  ℕ  ∧  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ )  →  ( ¬  2  ∥  𝑃  ↔  ( 2  gcd  𝑃 )  =  1 ) ) | 
						
							| 113 | 109 112 | mpbid | ⊢ ( ( 𝑃  ∈  ℕ  ∧  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ )  →  ( 2  gcd  𝑃 )  =  1 ) | 
						
							| 114 | 113 | 3adant2 | ⊢ ( ( 𝑃  ∈  ℕ  ∧  1  <  𝑃  ∧  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ )  →  ( 2  gcd  𝑃 )  =  1 ) | 
						
							| 115 | 21 114 | syl | ⊢ ( 𝜑  →  ( 2  gcd  𝑃 )  =  1 ) | 
						
							| 116 | 103 115 | eqtrd | ⊢ ( 𝜑  →  ( - 2  gcd  𝑃 )  =  1 ) | 
						
							| 117 | 99 116 | eqtrd | ⊢ ( 𝜑  →  ( ( - 2  mod  𝑃 )  gcd  𝑃 )  =  1 ) | 
						
							| 118 | 95 117 | eqtrd | ⊢ ( 𝜑  →  ( ( ( - 1  −  1 )  mod  𝑃 )  gcd  𝑃 )  =  1 ) | 
						
							| 119 | 118 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑝  =  2 )  ∧  𝑥  ∈  ℤ )  ∧  ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) )  →  ( ( ( - 1  −  1 )  mod  𝑃 )  gcd  𝑃 )  =  1 ) | 
						
							| 120 | 79 85 119 | 3eqtr3d | ⊢ ( ( ( ( 𝜑  ∧  𝑝  =  2 )  ∧  𝑥  ∈  ℤ )  ∧  ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) )  →  ( ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  𝑝 ) )  −  1 )  gcd  𝑃 )  =  1 ) | 
						
							| 121 | 56 120 | jca | ⊢ ( ( ( ( 𝜑  ∧  𝑝  =  2 )  ∧  𝑥  ∈  ℤ )  ∧  ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) )  →  ( ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  mod  𝑃 )  =  1  ∧  ( ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  𝑝 ) )  −  1 )  gcd  𝑃 )  =  1 ) ) | 
						
							| 122 | 121 | ex | ⊢ ( ( ( 𝜑  ∧  𝑝  =  2 )  ∧  𝑥  ∈  ℤ )  →  ( ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 )  →  ( ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  mod  𝑃 )  =  1  ∧  ( ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  𝑝 ) )  −  1 )  gcd  𝑃 )  =  1 ) ) ) | 
						
							| 123 | 122 | reximdva | ⊢ ( ( 𝜑  ∧  𝑝  =  2 )  →  ( ∃ 𝑥  ∈  ℤ ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 )  →  ∃ 𝑥  ∈  ℤ ( ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  mod  𝑃 )  =  1  ∧  ( ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  𝑝 ) )  −  1 )  gcd  𝑃 )  =  1 ) ) ) | 
						
							| 124 | 123 | ex | ⊢ ( 𝜑  →  ( 𝑝  =  2  →  ( ∃ 𝑥  ∈  ℤ ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 )  →  ∃ 𝑥  ∈  ℤ ( ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  mod  𝑃 )  =  1  ∧  ( ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  𝑝 ) )  −  1 )  gcd  𝑃 )  =  1 ) ) ) ) | 
						
							| 125 | 5 124 | mpid | ⊢ ( 𝜑  →  ( 𝑝  =  2  →  ∃ 𝑥  ∈  ℤ ( ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  mod  𝑃 )  =  1  ∧  ( ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  𝑝 ) )  −  1 )  gcd  𝑃 )  =  1 ) ) ) | 
						
							| 126 | 125 | adantr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( 𝑝  =  2  →  ∃ 𝑥  ∈  ℤ ( ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  mod  𝑃 )  =  1  ∧  ( ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  𝑝 ) )  −  1 )  gcd  𝑃 )  =  1 ) ) ) | 
						
							| 127 | 20 126 | sylbid | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( 𝑝  ∥  ( 2 ↑ 𝑁 )  →  ∃ 𝑥  ∈  ℤ ( ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  mod  𝑃 )  =  1  ∧  ( ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  𝑝 ) )  −  1 )  gcd  𝑃 )  =  1 ) ) ) | 
						
							| 128 | 127 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑝  ∈  ℙ ( 𝑝  ∥  ( 2 ↑ 𝑁 )  →  ∃ 𝑥  ∈  ℤ ( ( ( 𝑥 ↑ ( 𝑃  −  1 ) )  mod  𝑃 )  =  1  ∧  ( ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  𝑝 ) )  −  1 )  gcd  𝑃 )  =  1 ) ) ) | 
						
							| 129 | 9 2 4 14 128 | pockthg | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) |