Step |
Hyp |
Ref |
Expression |
1 |
|
proththd.n |
|
2 |
|
proththd.k |
|
3 |
|
proththd.p |
|
4 |
|
proththd.l |
|
5 |
|
proththd.x |
|
6 |
|
2nn |
|
7 |
6
|
a1i |
|
8 |
1
|
nnnn0d |
|
9 |
7 8
|
nnexpcld |
|
10 |
2
|
nncnd |
|
11 |
9
|
nncnd |
|
12 |
10 11
|
mulcomd |
|
13 |
12
|
oveq1d |
|
14 |
3 13
|
eqtrd |
|
15 |
|
simpr |
|
16 |
|
2prm |
|
17 |
16
|
a1i |
|
18 |
1
|
adantr |
|
19 |
|
prmdvdsexpb |
|
20 |
15 17 18 19
|
syl3anc |
|
21 |
1 2 3
|
proththdlem |
|
22 |
21
|
simp1d |
|
23 |
22
|
nncnd |
|
24 |
|
peano2cnm |
|
25 |
23 24
|
syl |
|
26 |
25
|
adantr |
|
27 |
|
2cnd |
|
28 |
|
2ne0 |
|
29 |
28
|
a1i |
|
30 |
26 27 29
|
divcan1d |
|
31 |
30
|
eqcomd |
|
32 |
31
|
oveq2d |
|
33 |
|
zcn |
|
34 |
33
|
adantl |
|
35 |
|
2nn0 |
|
36 |
35
|
a1i |
|
37 |
21
|
simp3d |
|
38 |
37
|
nnnn0d |
|
39 |
38
|
adantr |
|
40 |
34 36 39
|
expmuld |
|
41 |
32 40
|
eqtrd |
|
42 |
41
|
ad4ant13 |
|
43 |
42
|
oveq1d |
|
44 |
38
|
adantr |
|
45 |
44
|
anim1i |
|
46 |
45
|
ancomd |
|
47 |
|
zexpcl |
|
48 |
46 47
|
syl |
|
49 |
48
|
adantr |
|
50 |
22
|
nnrpd |
|
51 |
50
|
ad3antrrr |
|
52 |
21
|
simp2d |
|
53 |
52
|
ad3antrrr |
|
54 |
|
simpr |
|
55 |
49 51 53 54
|
modexp2m1d |
|
56 |
43 55
|
eqtrd |
|
57 |
|
oveq2 |
|
58 |
57
|
eleq1d |
|
59 |
58
|
adantl |
|
60 |
44 59
|
mpbird |
|
61 |
60
|
anim2i |
|
62 |
61
|
ancoms |
|
63 |
|
zexpcl |
|
64 |
62 63
|
syl |
|
65 |
64
|
zred |
|
66 |
65
|
adantr |
|
67 |
|
1red |
|
68 |
67
|
renegcld |
|
69 |
|
oveq2 |
|
70 |
69
|
eqcoms |
|
71 |
70
|
oveq2d |
|
72 |
71
|
oveq1d |
|
73 |
72
|
eqeq1d |
|
74 |
73
|
adantl |
|
75 |
74
|
adantr |
|
76 |
75
|
biimpa |
|
77 |
|
eqidd |
|
78 |
66 68 67 67 51 76 77
|
modsub12d |
|
79 |
78
|
oveq1d |
|
80 |
|
peano2zm |
|
81 |
64 80
|
syl |
|
82 |
22
|
ad2antrr |
|
83 |
|
modgcd |
|
84 |
81 82 83
|
syl2anc |
|
85 |
84
|
adantr |
|
86 |
|
ax-1cn |
|
87 |
|
negdi2 |
|
88 |
87
|
eqcomd |
|
89 |
86 86 88
|
mp2an |
|
90 |
|
1p1e2 |
|
91 |
90
|
negeqi |
|
92 |
89 91
|
eqtri |
|
93 |
92
|
a1i |
|
94 |
93
|
oveq1d |
|
95 |
94
|
oveq1d |
|
96 |
|
nnnegz |
|
97 |
7 96
|
syl |
|
98 |
|
modgcd |
|
99 |
97 22 98
|
syl2anc |
|
100 |
|
2z |
|
101 |
22
|
nnzd |
|
102 |
|
neggcd |
|
103 |
100 101 102
|
sylancr |
|
104 |
|
nnz |
|
105 |
|
oddm1d2 |
|
106 |
104 105
|
syl |
|
107 |
106
|
biimprd |
|
108 |
|
nnz |
|
109 |
107 108
|
impel |
|
110 |
|
isoddgcd1 |
|
111 |
104 110
|
syl |
|
112 |
111
|
adantr |
|
113 |
109 112
|
mpbid |
|
114 |
113
|
3adant2 |
|
115 |
21 114
|
syl |
|
116 |
103 115
|
eqtrd |
|
117 |
99 116
|
eqtrd |
|
118 |
95 117
|
eqtrd |
|
119 |
118
|
ad3antrrr |
|
120 |
79 85 119
|
3eqtr3d |
|
121 |
56 120
|
jca |
|
122 |
121
|
ex |
|
123 |
122
|
reximdva |
|
124 |
123
|
ex |
|
125 |
5 124
|
mpid |
|
126 |
125
|
adantr |
|
127 |
20 126
|
sylbid |
|
128 |
127
|
ralrimiva |
|
129 |
9 2 4 14 128
|
pockthg |
|