| Step | Hyp | Ref | Expression | 
						
							| 1 |  | proththd.n |  | 
						
							| 2 |  | proththd.k |  | 
						
							| 3 |  | proththd.p |  | 
						
							| 4 |  | proththd.l |  | 
						
							| 5 |  | proththd.x |  | 
						
							| 6 |  | 2nn |  | 
						
							| 7 | 6 | a1i |  | 
						
							| 8 | 1 | nnnn0d |  | 
						
							| 9 | 7 8 | nnexpcld |  | 
						
							| 10 | 2 | nncnd |  | 
						
							| 11 | 9 | nncnd |  | 
						
							| 12 | 10 11 | mulcomd |  | 
						
							| 13 | 12 | oveq1d |  | 
						
							| 14 | 3 13 | eqtrd |  | 
						
							| 15 |  | simpr |  | 
						
							| 16 |  | 2prm |  | 
						
							| 17 | 16 | a1i |  | 
						
							| 18 | 1 | adantr |  | 
						
							| 19 |  | prmdvdsexpb |  | 
						
							| 20 | 15 17 18 19 | syl3anc |  | 
						
							| 21 | 1 2 3 | proththdlem |  | 
						
							| 22 | 21 | simp1d |  | 
						
							| 23 | 22 | nncnd |  | 
						
							| 24 |  | peano2cnm |  | 
						
							| 25 | 23 24 | syl |  | 
						
							| 26 | 25 | adantr |  | 
						
							| 27 |  | 2cnd |  | 
						
							| 28 |  | 2ne0 |  | 
						
							| 29 | 28 | a1i |  | 
						
							| 30 | 26 27 29 | divcan1d |  | 
						
							| 31 | 30 | eqcomd |  | 
						
							| 32 | 31 | oveq2d |  | 
						
							| 33 |  | zcn |  | 
						
							| 34 | 33 | adantl |  | 
						
							| 35 |  | 2nn0 |  | 
						
							| 36 | 35 | a1i |  | 
						
							| 37 | 21 | simp3d |  | 
						
							| 38 | 37 | nnnn0d |  | 
						
							| 39 | 38 | adantr |  | 
						
							| 40 | 34 36 39 | expmuld |  | 
						
							| 41 | 32 40 | eqtrd |  | 
						
							| 42 | 41 | ad4ant13 |  | 
						
							| 43 | 42 | oveq1d |  | 
						
							| 44 | 38 | adantr |  | 
						
							| 45 | 44 | anim1i |  | 
						
							| 46 | 45 | ancomd |  | 
						
							| 47 |  | zexpcl |  | 
						
							| 48 | 46 47 | syl |  | 
						
							| 49 | 48 | adantr |  | 
						
							| 50 | 22 | nnrpd |  | 
						
							| 51 | 50 | ad3antrrr |  | 
						
							| 52 | 21 | simp2d |  | 
						
							| 53 | 52 | ad3antrrr |  | 
						
							| 54 |  | simpr |  | 
						
							| 55 | 49 51 53 54 | modexp2m1d |  | 
						
							| 56 | 43 55 | eqtrd |  | 
						
							| 57 |  | oveq2 |  | 
						
							| 58 | 57 | eleq1d |  | 
						
							| 59 | 58 | adantl |  | 
						
							| 60 | 44 59 | mpbird |  | 
						
							| 61 | 60 | anim2i |  | 
						
							| 62 | 61 | ancoms |  | 
						
							| 63 |  | zexpcl |  | 
						
							| 64 | 62 63 | syl |  | 
						
							| 65 | 64 | zred |  | 
						
							| 66 | 65 | adantr |  | 
						
							| 67 |  | 1red |  | 
						
							| 68 | 67 | renegcld |  | 
						
							| 69 |  | oveq2 |  | 
						
							| 70 | 69 | eqcoms |  | 
						
							| 71 | 70 | oveq2d |  | 
						
							| 72 | 71 | oveq1d |  | 
						
							| 73 | 72 | eqeq1d |  | 
						
							| 74 | 73 | adantl |  | 
						
							| 75 | 74 | adantr |  | 
						
							| 76 | 75 | biimpa |  | 
						
							| 77 |  | eqidd |  | 
						
							| 78 | 66 68 67 67 51 76 77 | modsub12d |  | 
						
							| 79 | 78 | oveq1d |  | 
						
							| 80 |  | peano2zm |  | 
						
							| 81 | 64 80 | syl |  | 
						
							| 82 | 22 | ad2antrr |  | 
						
							| 83 |  | modgcd |  | 
						
							| 84 | 81 82 83 | syl2anc |  | 
						
							| 85 | 84 | adantr |  | 
						
							| 86 |  | ax-1cn |  | 
						
							| 87 |  | negdi2 |  | 
						
							| 88 | 87 | eqcomd |  | 
						
							| 89 | 86 86 88 | mp2an |  | 
						
							| 90 |  | 1p1e2 |  | 
						
							| 91 | 90 | negeqi |  | 
						
							| 92 | 89 91 | eqtri |  | 
						
							| 93 | 92 | a1i |  | 
						
							| 94 | 93 | oveq1d |  | 
						
							| 95 | 94 | oveq1d |  | 
						
							| 96 |  | nnnegz |  | 
						
							| 97 | 7 96 | syl |  | 
						
							| 98 |  | modgcd |  | 
						
							| 99 | 97 22 98 | syl2anc |  | 
						
							| 100 |  | 2z |  | 
						
							| 101 | 22 | nnzd |  | 
						
							| 102 |  | neggcd |  | 
						
							| 103 | 100 101 102 | sylancr |  | 
						
							| 104 |  | nnz |  | 
						
							| 105 |  | oddm1d2 |  | 
						
							| 106 | 104 105 | syl |  | 
						
							| 107 | 106 | biimprd |  | 
						
							| 108 |  | nnz |  | 
						
							| 109 | 107 108 | impel |  | 
						
							| 110 |  | isoddgcd1 |  | 
						
							| 111 | 104 110 | syl |  | 
						
							| 112 | 111 | adantr |  | 
						
							| 113 | 109 112 | mpbid |  | 
						
							| 114 | 113 | 3adant2 |  | 
						
							| 115 | 21 114 | syl |  | 
						
							| 116 | 103 115 | eqtrd |  | 
						
							| 117 | 99 116 | eqtrd |  | 
						
							| 118 | 95 117 | eqtrd |  | 
						
							| 119 | 118 | ad3antrrr |  | 
						
							| 120 | 79 85 119 | 3eqtr3d |  | 
						
							| 121 | 56 120 | jca |  | 
						
							| 122 | 121 | ex |  | 
						
							| 123 | 122 | reximdva |  | 
						
							| 124 | 123 | ex |  | 
						
							| 125 | 5 124 | mpid |  | 
						
							| 126 | 125 | adantr |  | 
						
							| 127 | 20 126 | sylbid |  | 
						
							| 128 | 127 | ralrimiva |  | 
						
							| 129 | 9 2 4 14 128 | pockthg |  |