| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pockthg.1 |
|- ( ph -> A e. NN ) |
| 2 |
|
pockthg.2 |
|- ( ph -> B e. NN ) |
| 3 |
|
pockthg.3 |
|- ( ph -> B < A ) |
| 4 |
|
pockthg.4 |
|- ( ph -> N = ( ( A x. B ) + 1 ) ) |
| 5 |
|
pockthg.5 |
|- ( ph -> A. p e. Prime ( p || A -> E. x e. ZZ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) ) ) |
| 6 |
1 2
|
nnmulcld |
|- ( ph -> ( A x. B ) e. NN ) |
| 7 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 8 |
6 7
|
eleqtrdi |
|- ( ph -> ( A x. B ) e. ( ZZ>= ` 1 ) ) |
| 9 |
|
eluzp1p1 |
|- ( ( A x. B ) e. ( ZZ>= ` 1 ) -> ( ( A x. B ) + 1 ) e. ( ZZ>= ` ( 1 + 1 ) ) ) |
| 10 |
8 9
|
syl |
|- ( ph -> ( ( A x. B ) + 1 ) e. ( ZZ>= ` ( 1 + 1 ) ) ) |
| 11 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 12 |
11
|
fveq2i |
|- ( ZZ>= ` 2 ) = ( ZZ>= ` ( 1 + 1 ) ) |
| 13 |
10 12
|
eleqtrrdi |
|- ( ph -> ( ( A x. B ) + 1 ) e. ( ZZ>= ` 2 ) ) |
| 14 |
4 13
|
eqeltrd |
|- ( ph -> N e. ( ZZ>= ` 2 ) ) |
| 15 |
|
eluzelre |
|- ( N e. ( ZZ>= ` 2 ) -> N e. RR ) |
| 16 |
14 15
|
syl |
|- ( ph -> N e. RR ) |
| 17 |
16
|
adantr |
|- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> N e. RR ) |
| 18 |
1
|
nnred |
|- ( ph -> A e. RR ) |
| 19 |
18
|
resqcld |
|- ( ph -> ( A ^ 2 ) e. RR ) |
| 20 |
19
|
adantr |
|- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> ( A ^ 2 ) e. RR ) |
| 21 |
|
prmnn |
|- ( q e. Prime -> q e. NN ) |
| 22 |
21
|
ad2antrl |
|- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> q e. NN ) |
| 23 |
22
|
nnred |
|- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> q e. RR ) |
| 24 |
23
|
resqcld |
|- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> ( q ^ 2 ) e. RR ) |
| 25 |
2
|
nnred |
|- ( ph -> B e. RR ) |
| 26 |
1
|
nngt0d |
|- ( ph -> 0 < A ) |
| 27 |
|
ltmul2 |
|- ( ( B e. RR /\ A e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( B < A <-> ( A x. B ) < ( A x. A ) ) ) |
| 28 |
25 18 18 26 27
|
syl112anc |
|- ( ph -> ( B < A <-> ( A x. B ) < ( A x. A ) ) ) |
| 29 |
3 28
|
mpbid |
|- ( ph -> ( A x. B ) < ( A x. A ) ) |
| 30 |
1 1
|
nnmulcld |
|- ( ph -> ( A x. A ) e. NN ) |
| 31 |
|
nnltp1le |
|- ( ( ( A x. B ) e. NN /\ ( A x. A ) e. NN ) -> ( ( A x. B ) < ( A x. A ) <-> ( ( A x. B ) + 1 ) <_ ( A x. A ) ) ) |
| 32 |
6 30 31
|
syl2anc |
|- ( ph -> ( ( A x. B ) < ( A x. A ) <-> ( ( A x. B ) + 1 ) <_ ( A x. A ) ) ) |
| 33 |
29 32
|
mpbid |
|- ( ph -> ( ( A x. B ) + 1 ) <_ ( A x. A ) ) |
| 34 |
1
|
nncnd |
|- ( ph -> A e. CC ) |
| 35 |
34
|
sqvald |
|- ( ph -> ( A ^ 2 ) = ( A x. A ) ) |
| 36 |
33 4 35
|
3brtr4d |
|- ( ph -> N <_ ( A ^ 2 ) ) |
| 37 |
36
|
adantr |
|- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> N <_ ( A ^ 2 ) ) |
| 38 |
5
|
adantr |
|- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> A. p e. Prime ( p || A -> E. x e. ZZ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) ) ) |
| 39 |
|
prmnn |
|- ( p e. Prime -> p e. NN ) |
| 40 |
39
|
ad2antrl |
|- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) -> p e. NN ) |
| 41 |
40
|
nncnd |
|- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) -> p e. CC ) |
| 42 |
41
|
exp1d |
|- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) -> ( p ^ 1 ) = p ) |
| 43 |
|
nnge1 |
|- ( ( p pCnt A ) e. NN -> 1 <_ ( p pCnt A ) ) |
| 44 |
43
|
ad2antll |
|- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) -> 1 <_ ( p pCnt A ) ) |
| 45 |
|
simprl |
|- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) -> p e. Prime ) |
| 46 |
1
|
nnzd |
|- ( ph -> A e. ZZ ) |
| 47 |
46
|
ad2antrr |
|- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) -> A e. ZZ ) |
| 48 |
|
1nn0 |
|- 1 e. NN0 |
| 49 |
48
|
a1i |
|- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) -> 1 e. NN0 ) |
| 50 |
|
pcdvdsb |
|- ( ( p e. Prime /\ A e. ZZ /\ 1 e. NN0 ) -> ( 1 <_ ( p pCnt A ) <-> ( p ^ 1 ) || A ) ) |
| 51 |
45 47 49 50
|
syl3anc |
|- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) -> ( 1 <_ ( p pCnt A ) <-> ( p ^ 1 ) || A ) ) |
| 52 |
44 51
|
mpbid |
|- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) -> ( p ^ 1 ) || A ) |
| 53 |
42 52
|
eqbrtrrd |
|- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) -> p || A ) |
| 54 |
|
simpl1 |
|- ( ( ( ph /\ ( q e. Prime /\ q || N ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) /\ ( x e. ZZ /\ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) ) ) -> ph ) |
| 55 |
54 1
|
syl |
|- ( ( ( ph /\ ( q e. Prime /\ q || N ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) /\ ( x e. ZZ /\ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) ) ) -> A e. NN ) |
| 56 |
54 2
|
syl |
|- ( ( ( ph /\ ( q e. Prime /\ q || N ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) /\ ( x e. ZZ /\ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) ) ) -> B e. NN ) |
| 57 |
54 3
|
syl |
|- ( ( ( ph /\ ( q e. Prime /\ q || N ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) /\ ( x e. ZZ /\ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) ) ) -> B < A ) |
| 58 |
54 4
|
syl |
|- ( ( ( ph /\ ( q e. Prime /\ q || N ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) /\ ( x e. ZZ /\ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) ) ) -> N = ( ( A x. B ) + 1 ) ) |
| 59 |
|
simpl2l |
|- ( ( ( ph /\ ( q e. Prime /\ q || N ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) /\ ( x e. ZZ /\ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) ) ) -> q e. Prime ) |
| 60 |
|
simpl2r |
|- ( ( ( ph /\ ( q e. Prime /\ q || N ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) /\ ( x e. ZZ /\ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) ) ) -> q || N ) |
| 61 |
|
simpl3l |
|- ( ( ( ph /\ ( q e. Prime /\ q || N ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) /\ ( x e. ZZ /\ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) ) ) -> p e. Prime ) |
| 62 |
|
simpl3r |
|- ( ( ( ph /\ ( q e. Prime /\ q || N ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) /\ ( x e. ZZ /\ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) ) ) -> ( p pCnt A ) e. NN ) |
| 63 |
|
simprl |
|- ( ( ( ph /\ ( q e. Prime /\ q || N ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) /\ ( x e. ZZ /\ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) ) ) -> x e. ZZ ) |
| 64 |
|
simprrl |
|- ( ( ( ph /\ ( q e. Prime /\ q || N ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) /\ ( x e. ZZ /\ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) ) ) -> ( ( x ^ ( N - 1 ) ) mod N ) = 1 ) |
| 65 |
|
simprrr |
|- ( ( ( ph /\ ( q e. Prime /\ q || N ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) /\ ( x e. ZZ /\ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) ) ) -> ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) |
| 66 |
55 56 57 58 59 60 61 62 63 64 65
|
pockthlem |
|- ( ( ( ph /\ ( q e. Prime /\ q || N ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) /\ ( x e. ZZ /\ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) ) ) -> ( p pCnt A ) <_ ( p pCnt ( q - 1 ) ) ) |
| 67 |
66
|
rexlimdvaa |
|- ( ( ph /\ ( q e. Prime /\ q || N ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) -> ( E. x e. ZZ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) -> ( p pCnt A ) <_ ( p pCnt ( q - 1 ) ) ) ) |
| 68 |
67
|
3expa |
|- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) -> ( E. x e. ZZ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) -> ( p pCnt A ) <_ ( p pCnt ( q - 1 ) ) ) ) |
| 69 |
53 68
|
embantd |
|- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ ( p e. Prime /\ ( p pCnt A ) e. NN ) ) -> ( ( p || A -> E. x e. ZZ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) ) -> ( p pCnt A ) <_ ( p pCnt ( q - 1 ) ) ) ) |
| 70 |
69
|
expr |
|- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ p e. Prime ) -> ( ( p pCnt A ) e. NN -> ( ( p || A -> E. x e. ZZ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) ) -> ( p pCnt A ) <_ ( p pCnt ( q - 1 ) ) ) ) ) |
| 71 |
|
id |
|- ( p e. Prime -> p e. Prime ) |
| 72 |
|
prmuz2 |
|- ( q e. Prime -> q e. ( ZZ>= ` 2 ) ) |
| 73 |
|
uz2m1nn |
|- ( q e. ( ZZ>= ` 2 ) -> ( q - 1 ) e. NN ) |
| 74 |
72 73
|
syl |
|- ( q e. Prime -> ( q - 1 ) e. NN ) |
| 75 |
74
|
ad2antrl |
|- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> ( q - 1 ) e. NN ) |
| 76 |
|
pccl |
|- ( ( p e. Prime /\ ( q - 1 ) e. NN ) -> ( p pCnt ( q - 1 ) ) e. NN0 ) |
| 77 |
71 75 76
|
syl2anr |
|- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ p e. Prime ) -> ( p pCnt ( q - 1 ) ) e. NN0 ) |
| 78 |
77
|
nn0ge0d |
|- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ p e. Prime ) -> 0 <_ ( p pCnt ( q - 1 ) ) ) |
| 79 |
|
breq1 |
|- ( ( p pCnt A ) = 0 -> ( ( p pCnt A ) <_ ( p pCnt ( q - 1 ) ) <-> 0 <_ ( p pCnt ( q - 1 ) ) ) ) |
| 80 |
78 79
|
syl5ibrcom |
|- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ p e. Prime ) -> ( ( p pCnt A ) = 0 -> ( p pCnt A ) <_ ( p pCnt ( q - 1 ) ) ) ) |
| 81 |
80
|
a1dd |
|- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ p e. Prime ) -> ( ( p pCnt A ) = 0 -> ( ( p || A -> E. x e. ZZ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) ) -> ( p pCnt A ) <_ ( p pCnt ( q - 1 ) ) ) ) ) |
| 82 |
|
simpr |
|- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ p e. Prime ) -> p e. Prime ) |
| 83 |
1
|
ad2antrr |
|- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ p e. Prime ) -> A e. NN ) |
| 84 |
82 83
|
pccld |
|- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ p e. Prime ) -> ( p pCnt A ) e. NN0 ) |
| 85 |
|
elnn0 |
|- ( ( p pCnt A ) e. NN0 <-> ( ( p pCnt A ) e. NN \/ ( p pCnt A ) = 0 ) ) |
| 86 |
84 85
|
sylib |
|- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ p e. Prime ) -> ( ( p pCnt A ) e. NN \/ ( p pCnt A ) = 0 ) ) |
| 87 |
70 81 86
|
mpjaod |
|- ( ( ( ph /\ ( q e. Prime /\ q || N ) ) /\ p e. Prime ) -> ( ( p || A -> E. x e. ZZ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) ) -> ( p pCnt A ) <_ ( p pCnt ( q - 1 ) ) ) ) |
| 88 |
87
|
ralimdva |
|- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> ( A. p e. Prime ( p || A -> E. x e. ZZ ( ( ( x ^ ( N - 1 ) ) mod N ) = 1 /\ ( ( ( x ^ ( ( N - 1 ) / p ) ) - 1 ) gcd N ) = 1 ) ) -> A. p e. Prime ( p pCnt A ) <_ ( p pCnt ( q - 1 ) ) ) ) |
| 89 |
38 88
|
mpd |
|- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> A. p e. Prime ( p pCnt A ) <_ ( p pCnt ( q - 1 ) ) ) |
| 90 |
75
|
nnzd |
|- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> ( q - 1 ) e. ZZ ) |
| 91 |
|
pc2dvds |
|- ( ( A e. ZZ /\ ( q - 1 ) e. ZZ ) -> ( A || ( q - 1 ) <-> A. p e. Prime ( p pCnt A ) <_ ( p pCnt ( q - 1 ) ) ) ) |
| 92 |
46 90 91
|
syl2an2r |
|- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> ( A || ( q - 1 ) <-> A. p e. Prime ( p pCnt A ) <_ ( p pCnt ( q - 1 ) ) ) ) |
| 93 |
89 92
|
mpbird |
|- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> A || ( q - 1 ) ) |
| 94 |
|
dvdsle |
|- ( ( A e. ZZ /\ ( q - 1 ) e. NN ) -> ( A || ( q - 1 ) -> A <_ ( q - 1 ) ) ) |
| 95 |
46 75 94
|
syl2an2r |
|- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> ( A || ( q - 1 ) -> A <_ ( q - 1 ) ) ) |
| 96 |
93 95
|
mpd |
|- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> A <_ ( q - 1 ) ) |
| 97 |
1
|
nnnn0d |
|- ( ph -> A e. NN0 ) |
| 98 |
22
|
nnnn0d |
|- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> q e. NN0 ) |
| 99 |
|
nn0ltlem1 |
|- ( ( A e. NN0 /\ q e. NN0 ) -> ( A < q <-> A <_ ( q - 1 ) ) ) |
| 100 |
97 98 99
|
syl2an2r |
|- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> ( A < q <-> A <_ ( q - 1 ) ) ) |
| 101 |
96 100
|
mpbird |
|- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> A < q ) |
| 102 |
18
|
adantr |
|- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> A e. RR ) |
| 103 |
97
|
nn0ge0d |
|- ( ph -> 0 <_ A ) |
| 104 |
103
|
adantr |
|- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> 0 <_ A ) |
| 105 |
98
|
nn0ge0d |
|- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> 0 <_ q ) |
| 106 |
102 23 104 105
|
lt2sqd |
|- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> ( A < q <-> ( A ^ 2 ) < ( q ^ 2 ) ) ) |
| 107 |
101 106
|
mpbid |
|- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> ( A ^ 2 ) < ( q ^ 2 ) ) |
| 108 |
17 20 24 37 107
|
lelttrd |
|- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> N < ( q ^ 2 ) ) |
| 109 |
17 24
|
ltnled |
|- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> ( N < ( q ^ 2 ) <-> -. ( q ^ 2 ) <_ N ) ) |
| 110 |
108 109
|
mpbid |
|- ( ( ph /\ ( q e. Prime /\ q || N ) ) -> -. ( q ^ 2 ) <_ N ) |
| 111 |
110
|
expr |
|- ( ( ph /\ q e. Prime ) -> ( q || N -> -. ( q ^ 2 ) <_ N ) ) |
| 112 |
111
|
con2d |
|- ( ( ph /\ q e. Prime ) -> ( ( q ^ 2 ) <_ N -> -. q || N ) ) |
| 113 |
112
|
ralrimiva |
|- ( ph -> A. q e. Prime ( ( q ^ 2 ) <_ N -> -. q || N ) ) |
| 114 |
|
isprm5 |
|- ( N e. Prime <-> ( N e. ( ZZ>= ` 2 ) /\ A. q e. Prime ( ( q ^ 2 ) <_ N -> -. q || N ) ) ) |
| 115 |
14 113 114
|
sylanbrc |
|- ( ph -> N e. Prime ) |