Step |
Hyp |
Ref |
Expression |
1 |
|
41prothprm.p |
⊢ 𝑃 = ; 4 1 |
2 |
1
|
41prothprmlem2 |
⊢ ( ( 3 ↑ ( ( 𝑃 − 1 ) / 2 ) ) mod 𝑃 ) = ( - 1 mod 𝑃 ) |
3 |
|
dfdec10 |
⊢ ; 4 1 = ( ( ; 1 0 · 4 ) + 1 ) |
4 |
|
4t2e8 |
⊢ ( 4 · 2 ) = 8 |
5 |
|
4cn |
⊢ 4 ∈ ℂ |
6 |
|
2cn |
⊢ 2 ∈ ℂ |
7 |
5 6
|
mulcomi |
⊢ ( 4 · 2 ) = ( 2 · 4 ) |
8 |
4 7
|
eqtr3i |
⊢ 8 = ( 2 · 4 ) |
9 |
8
|
oveq2i |
⊢ ( 5 · 8 ) = ( 5 · ( 2 · 4 ) ) |
10 |
|
5cn |
⊢ 5 ∈ ℂ |
11 |
10 6 5
|
mulassi |
⊢ ( ( 5 · 2 ) · 4 ) = ( 5 · ( 2 · 4 ) ) |
12 |
|
5t2e10 |
⊢ ( 5 · 2 ) = ; 1 0 |
13 |
12
|
oveq1i |
⊢ ( ( 5 · 2 ) · 4 ) = ( ; 1 0 · 4 ) |
14 |
9 11 13
|
3eqtr2i |
⊢ ( 5 · 8 ) = ( ; 1 0 · 4 ) |
15 |
|
cu2 |
⊢ ( 2 ↑ 3 ) = 8 |
16 |
15
|
eqcomi |
⊢ 8 = ( 2 ↑ 3 ) |
17 |
16
|
oveq2i |
⊢ ( 5 · 8 ) = ( 5 · ( 2 ↑ 3 ) ) |
18 |
14 17
|
eqtr3i |
⊢ ( ; 1 0 · 4 ) = ( 5 · ( 2 ↑ 3 ) ) |
19 |
18
|
oveq1i |
⊢ ( ( ; 1 0 · 4 ) + 1 ) = ( ( 5 · ( 2 ↑ 3 ) ) + 1 ) |
20 |
1 3 19
|
3eqtri |
⊢ 𝑃 = ( ( 5 · ( 2 ↑ 3 ) ) + 1 ) |
21 |
|
simpr |
⊢ ( ( ( ( 3 ↑ ( ( 𝑃 − 1 ) / 2 ) ) mod 𝑃 ) = ( - 1 mod 𝑃 ) ∧ 𝑃 = ( ( 5 · ( 2 ↑ 3 ) ) + 1 ) ) → 𝑃 = ( ( 5 · ( 2 ↑ 3 ) ) + 1 ) ) |
22 |
|
3nn |
⊢ 3 ∈ ℕ |
23 |
22
|
a1i |
⊢ ( ( ( ( 3 ↑ ( ( 𝑃 − 1 ) / 2 ) ) mod 𝑃 ) = ( - 1 mod 𝑃 ) ∧ 𝑃 = ( ( 5 · ( 2 ↑ 3 ) ) + 1 ) ) → 3 ∈ ℕ ) |
24 |
|
5nn |
⊢ 5 ∈ ℕ |
25 |
24
|
a1i |
⊢ ( ( ( ( 3 ↑ ( ( 𝑃 − 1 ) / 2 ) ) mod 𝑃 ) = ( - 1 mod 𝑃 ) ∧ 𝑃 = ( ( 5 · ( 2 ↑ 3 ) ) + 1 ) ) → 5 ∈ ℕ ) |
26 |
|
5lt8 |
⊢ 5 < 8 |
27 |
26 15
|
breqtrri |
⊢ 5 < ( 2 ↑ 3 ) |
28 |
27
|
a1i |
⊢ ( ( ( ( 3 ↑ ( ( 𝑃 − 1 ) / 2 ) ) mod 𝑃 ) = ( - 1 mod 𝑃 ) ∧ 𝑃 = ( ( 5 · ( 2 ↑ 3 ) ) + 1 ) ) → 5 < ( 2 ↑ 3 ) ) |
29 |
|
3z |
⊢ 3 ∈ ℤ |
30 |
29
|
a1i |
⊢ ( ( ( 3 ↑ ( ( 𝑃 − 1 ) / 2 ) ) mod 𝑃 ) = ( - 1 mod 𝑃 ) → 3 ∈ ℤ ) |
31 |
|
oveq1 |
⊢ ( 𝑥 = 3 → ( 𝑥 ↑ ( ( 𝑃 − 1 ) / 2 ) ) = ( 3 ↑ ( ( 𝑃 − 1 ) / 2 ) ) ) |
32 |
31
|
oveq1d |
⊢ ( 𝑥 = 3 → ( ( 𝑥 ↑ ( ( 𝑃 − 1 ) / 2 ) ) mod 𝑃 ) = ( ( 3 ↑ ( ( 𝑃 − 1 ) / 2 ) ) mod 𝑃 ) ) |
33 |
32
|
eqeq1d |
⊢ ( 𝑥 = 3 → ( ( ( 𝑥 ↑ ( ( 𝑃 − 1 ) / 2 ) ) mod 𝑃 ) = ( - 1 mod 𝑃 ) ↔ ( ( 3 ↑ ( ( 𝑃 − 1 ) / 2 ) ) mod 𝑃 ) = ( - 1 mod 𝑃 ) ) ) |
34 |
33
|
adantl |
⊢ ( ( ( ( 3 ↑ ( ( 𝑃 − 1 ) / 2 ) ) mod 𝑃 ) = ( - 1 mod 𝑃 ) ∧ 𝑥 = 3 ) → ( ( ( 𝑥 ↑ ( ( 𝑃 − 1 ) / 2 ) ) mod 𝑃 ) = ( - 1 mod 𝑃 ) ↔ ( ( 3 ↑ ( ( 𝑃 − 1 ) / 2 ) ) mod 𝑃 ) = ( - 1 mod 𝑃 ) ) ) |
35 |
|
id |
⊢ ( ( ( 3 ↑ ( ( 𝑃 − 1 ) / 2 ) ) mod 𝑃 ) = ( - 1 mod 𝑃 ) → ( ( 3 ↑ ( ( 𝑃 − 1 ) / 2 ) ) mod 𝑃 ) = ( - 1 mod 𝑃 ) ) |
36 |
30 34 35
|
rspcedvd |
⊢ ( ( ( 3 ↑ ( ( 𝑃 − 1 ) / 2 ) ) mod 𝑃 ) = ( - 1 mod 𝑃 ) → ∃ 𝑥 ∈ ℤ ( ( 𝑥 ↑ ( ( 𝑃 − 1 ) / 2 ) ) mod 𝑃 ) = ( - 1 mod 𝑃 ) ) |
37 |
36
|
adantr |
⊢ ( ( ( ( 3 ↑ ( ( 𝑃 − 1 ) / 2 ) ) mod 𝑃 ) = ( - 1 mod 𝑃 ) ∧ 𝑃 = ( ( 5 · ( 2 ↑ 3 ) ) + 1 ) ) → ∃ 𝑥 ∈ ℤ ( ( 𝑥 ↑ ( ( 𝑃 − 1 ) / 2 ) ) mod 𝑃 ) = ( - 1 mod 𝑃 ) ) |
38 |
23 25 21 28 37
|
proththd |
⊢ ( ( ( ( 3 ↑ ( ( 𝑃 − 1 ) / 2 ) ) mod 𝑃 ) = ( - 1 mod 𝑃 ) ∧ 𝑃 = ( ( 5 · ( 2 ↑ 3 ) ) + 1 ) ) → 𝑃 ∈ ℙ ) |
39 |
21 38
|
jca |
⊢ ( ( ( ( 3 ↑ ( ( 𝑃 − 1 ) / 2 ) ) mod 𝑃 ) = ( - 1 mod 𝑃 ) ∧ 𝑃 = ( ( 5 · ( 2 ↑ 3 ) ) + 1 ) ) → ( 𝑃 = ( ( 5 · ( 2 ↑ 3 ) ) + 1 ) ∧ 𝑃 ∈ ℙ ) ) |
40 |
2 20 39
|
mp2an |
⊢ ( 𝑃 = ( ( 5 · ( 2 ↑ 3 ) ) + 1 ) ∧ 𝑃 ∈ ℙ ) |