| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 41prothprm.p | ⊢ 𝑃  =  ; 4 1 | 
						
							| 2 | 1 | 41prothprmlem2 | ⊢ ( ( 3 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) | 
						
							| 3 |  | dfdec10 | ⊢ ; 4 1  =  ( ( ; 1 0  ·  4 )  +  1 ) | 
						
							| 4 |  | 4t2e8 | ⊢ ( 4  ·  2 )  =  8 | 
						
							| 5 |  | 4cn | ⊢ 4  ∈  ℂ | 
						
							| 6 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 7 | 5 6 | mulcomi | ⊢ ( 4  ·  2 )  =  ( 2  ·  4 ) | 
						
							| 8 | 4 7 | eqtr3i | ⊢ 8  =  ( 2  ·  4 ) | 
						
							| 9 | 8 | oveq2i | ⊢ ( 5  ·  8 )  =  ( 5  ·  ( 2  ·  4 ) ) | 
						
							| 10 |  | 5cn | ⊢ 5  ∈  ℂ | 
						
							| 11 | 10 6 5 | mulassi | ⊢ ( ( 5  ·  2 )  ·  4 )  =  ( 5  ·  ( 2  ·  4 ) ) | 
						
							| 12 |  | 5t2e10 | ⊢ ( 5  ·  2 )  =  ; 1 0 | 
						
							| 13 | 12 | oveq1i | ⊢ ( ( 5  ·  2 )  ·  4 )  =  ( ; 1 0  ·  4 ) | 
						
							| 14 | 9 11 13 | 3eqtr2i | ⊢ ( 5  ·  8 )  =  ( ; 1 0  ·  4 ) | 
						
							| 15 |  | cu2 | ⊢ ( 2 ↑ 3 )  =  8 | 
						
							| 16 | 15 | eqcomi | ⊢ 8  =  ( 2 ↑ 3 ) | 
						
							| 17 | 16 | oveq2i | ⊢ ( 5  ·  8 )  =  ( 5  ·  ( 2 ↑ 3 ) ) | 
						
							| 18 | 14 17 | eqtr3i | ⊢ ( ; 1 0  ·  4 )  =  ( 5  ·  ( 2 ↑ 3 ) ) | 
						
							| 19 | 18 | oveq1i | ⊢ ( ( ; 1 0  ·  4 )  +  1 )  =  ( ( 5  ·  ( 2 ↑ 3 ) )  +  1 ) | 
						
							| 20 | 1 3 19 | 3eqtri | ⊢ 𝑃  =  ( ( 5  ·  ( 2 ↑ 3 ) )  +  1 ) | 
						
							| 21 |  | simpr | ⊢ ( ( ( ( 3 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 )  ∧  𝑃  =  ( ( 5  ·  ( 2 ↑ 3 ) )  +  1 ) )  →  𝑃  =  ( ( 5  ·  ( 2 ↑ 3 ) )  +  1 ) ) | 
						
							| 22 |  | 3nn | ⊢ 3  ∈  ℕ | 
						
							| 23 | 22 | a1i | ⊢ ( ( ( ( 3 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 )  ∧  𝑃  =  ( ( 5  ·  ( 2 ↑ 3 ) )  +  1 ) )  →  3  ∈  ℕ ) | 
						
							| 24 |  | 5nn | ⊢ 5  ∈  ℕ | 
						
							| 25 | 24 | a1i | ⊢ ( ( ( ( 3 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 )  ∧  𝑃  =  ( ( 5  ·  ( 2 ↑ 3 ) )  +  1 ) )  →  5  ∈  ℕ ) | 
						
							| 26 |  | 5lt8 | ⊢ 5  <  8 | 
						
							| 27 | 26 15 | breqtrri | ⊢ 5  <  ( 2 ↑ 3 ) | 
						
							| 28 | 27 | a1i | ⊢ ( ( ( ( 3 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 )  ∧  𝑃  =  ( ( 5  ·  ( 2 ↑ 3 ) )  +  1 ) )  →  5  <  ( 2 ↑ 3 ) ) | 
						
							| 29 |  | 3z | ⊢ 3  ∈  ℤ | 
						
							| 30 | 29 | a1i | ⊢ ( ( ( 3 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 )  →  3  ∈  ℤ ) | 
						
							| 31 |  | oveq1 | ⊢ ( 𝑥  =  3  →  ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) )  =  ( 3 ↑ ( ( 𝑃  −  1 )  /  2 ) ) ) | 
						
							| 32 | 31 | oveq1d | ⊢ ( 𝑥  =  3  →  ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( ( 3 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 ) ) | 
						
							| 33 | 32 | eqeq1d | ⊢ ( 𝑥  =  3  →  ( ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 )  ↔  ( ( 3 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) ) | 
						
							| 34 | 33 | adantl | ⊢ ( ( ( ( 3 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 )  ∧  𝑥  =  3 )  →  ( ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 )  ↔  ( ( 3 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) ) | 
						
							| 35 |  | id | ⊢ ( ( ( 3 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 )  →  ( ( 3 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) | 
						
							| 36 | 30 34 35 | rspcedvd | ⊢ ( ( ( 3 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 )  →  ∃ 𝑥  ∈  ℤ ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( ( ( 3 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 )  ∧  𝑃  =  ( ( 5  ·  ( 2 ↑ 3 ) )  +  1 ) )  →  ∃ 𝑥  ∈  ℤ ( ( 𝑥 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 ) ) | 
						
							| 38 | 23 25 21 28 37 | proththd | ⊢ ( ( ( ( 3 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 )  ∧  𝑃  =  ( ( 5  ·  ( 2 ↑ 3 ) )  +  1 ) )  →  𝑃  ∈  ℙ ) | 
						
							| 39 | 21 38 | jca | ⊢ ( ( ( ( 3 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( - 1  mod  𝑃 )  ∧  𝑃  =  ( ( 5  ·  ( 2 ↑ 3 ) )  +  1 ) )  →  ( 𝑃  =  ( ( 5  ·  ( 2 ↑ 3 ) )  +  1 )  ∧  𝑃  ∈  ℙ ) ) | 
						
							| 40 | 2 20 39 | mp2an | ⊢ ( 𝑃  =  ( ( 5  ·  ( 2 ↑ 3 ) )  +  1 )  ∧  𝑃  ∈  ℙ ) |