Description: 41 is aProth prime. (Contributed by AV, 5-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 41prothprm.p | |
|
Assertion | 41prothprm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 41prothprm.p | |
|
2 | 1 | 41prothprmlem2 | |
3 | dfdec10 | |
|
4 | 4t2e8 | |
|
5 | 4cn | |
|
6 | 2cn | |
|
7 | 5 6 | mulcomi | |
8 | 4 7 | eqtr3i | |
9 | 8 | oveq2i | |
10 | 5cn | |
|
11 | 10 6 5 | mulassi | |
12 | 5t2e10 | |
|
13 | 12 | oveq1i | |
14 | 9 11 13 | 3eqtr2i | |
15 | cu2 | |
|
16 | 15 | eqcomi | |
17 | 16 | oveq2i | |
18 | 14 17 | eqtr3i | |
19 | 18 | oveq1i | |
20 | 1 3 19 | 3eqtri | |
21 | simpr | |
|
22 | 3nn | |
|
23 | 22 | a1i | |
24 | 5nn | |
|
25 | 24 | a1i | |
26 | 5lt8 | |
|
27 | 26 15 | breqtrri | |
28 | 27 | a1i | |
29 | 3z | |
|
30 | 29 | a1i | |
31 | oveq1 | |
|
32 | 31 | oveq1d | |
33 | 32 | eqeq1d | |
34 | 33 | adantl | |
35 | id | |
|
36 | 30 34 35 | rspcedvd | |
37 | 36 | adantr | |
38 | 23 25 21 28 37 | proththd | |
39 | 21 38 | jca | |
40 | 2 20 39 | mp2an | |