Metamath Proof Explorer


Theorem 41prothprm

Description: 41 is aProth prime. (Contributed by AV, 5-Jul-2020)

Ref Expression
Hypothesis 41prothprm.p P=41
Assertion 41prothprm P=523+1P

Proof

Step Hyp Ref Expression
1 41prothprm.p P=41
2 1 41prothprmlem2 3P12modP=-1modP
3 dfdec10 41=104+1
4 4t2e8 42=8
5 4cn 4
6 2cn 2
7 5 6 mulcomi 42=24
8 4 7 eqtr3i 8=24
9 8 oveq2i 58=524
10 5cn 5
11 10 6 5 mulassi 524=524
12 5t2e10 52=10
13 12 oveq1i 524=104
14 9 11 13 3eqtr2i 58=104
15 cu2 23=8
16 15 eqcomi 8=23
17 16 oveq2i 58=523
18 14 17 eqtr3i 104=523
19 18 oveq1i 104+1=523+1
20 1 3 19 3eqtri P=523+1
21 simpr 3P12modP=-1modPP=523+1P=523+1
22 3nn 3
23 22 a1i 3P12modP=-1modPP=523+13
24 5nn 5
25 24 a1i 3P12modP=-1modPP=523+15
26 5lt8 5<8
27 26 15 breqtrri 5<23
28 27 a1i 3P12modP=-1modPP=523+15<23
29 3z 3
30 29 a1i 3P12modP=-1modP3
31 oveq1 x=3xP12=3P12
32 31 oveq1d x=3xP12modP=3P12modP
33 32 eqeq1d x=3xP12modP=-1modP3P12modP=-1modP
34 33 adantl 3P12modP=-1modPx=3xP12modP=-1modP3P12modP=-1modP
35 id 3P12modP=-1modP3P12modP=-1modP
36 30 34 35 rspcedvd 3P12modP=-1modPxxP12modP=-1modP
37 36 adantr 3P12modP=-1modPP=523+1xxP12modP=-1modP
38 23 25 21 28 37 proththd 3P12modP=-1modPP=523+1P
39 21 38 jca 3P12modP=-1modPP=523+1P=523+1P
40 2 20 39 mp2an P=523+1P