Metamath Proof Explorer


Theorem 41prothprm

Description: 41 is aProth prime. (Contributed by AV, 5-Jul-2020)

Ref Expression
Hypothesis 41prothprm.p P = 41
Assertion 41prothprm P = 5 2 3 + 1 P

Proof

Step Hyp Ref Expression
1 41prothprm.p P = 41
2 1 41prothprmlem2 3 P 1 2 mod P = -1 mod P
3 dfdec10 41 = 10 4 + 1
4 4t2e8 4 2 = 8
5 4cn 4
6 2cn 2
7 5 6 mulcomi 4 2 = 2 4
8 4 7 eqtr3i 8 = 2 4
9 8 oveq2i 5 8 = 5 2 4
10 5cn 5
11 10 6 5 mulassi 5 2 4 = 5 2 4
12 5t2e10 5 2 = 10
13 12 oveq1i 5 2 4 = 10 4
14 9 11 13 3eqtr2i 5 8 = 10 4
15 cu2 2 3 = 8
16 15 eqcomi 8 = 2 3
17 16 oveq2i 5 8 = 5 2 3
18 14 17 eqtr3i 10 4 = 5 2 3
19 18 oveq1i 10 4 + 1 = 5 2 3 + 1
20 1 3 19 3eqtri P = 5 2 3 + 1
21 simpr 3 P 1 2 mod P = -1 mod P P = 5 2 3 + 1 P = 5 2 3 + 1
22 3nn 3
23 22 a1i 3 P 1 2 mod P = -1 mod P P = 5 2 3 + 1 3
24 5nn 5
25 24 a1i 3 P 1 2 mod P = -1 mod P P = 5 2 3 + 1 5
26 5lt8 5 < 8
27 26 15 breqtrri 5 < 2 3
28 27 a1i 3 P 1 2 mod P = -1 mod P P = 5 2 3 + 1 5 < 2 3
29 3z 3
30 29 a1i 3 P 1 2 mod P = -1 mod P 3
31 oveq1 x = 3 x P 1 2 = 3 P 1 2
32 31 oveq1d x = 3 x P 1 2 mod P = 3 P 1 2 mod P
33 32 eqeq1d x = 3 x P 1 2 mod P = -1 mod P 3 P 1 2 mod P = -1 mod P
34 33 adantl 3 P 1 2 mod P = -1 mod P x = 3 x P 1 2 mod P = -1 mod P 3 P 1 2 mod P = -1 mod P
35 id 3 P 1 2 mod P = -1 mod P 3 P 1 2 mod P = -1 mod P
36 30 34 35 rspcedvd 3 P 1 2 mod P = -1 mod P x x P 1 2 mod P = -1 mod P
37 36 adantr 3 P 1 2 mod P = -1 mod P P = 5 2 3 + 1 x x P 1 2 mod P = -1 mod P
38 23 25 21 28 37 proththd 3 P 1 2 mod P = -1 mod P P = 5 2 3 + 1 P
39 21 38 jca 3 P 1 2 mod P = -1 mod P P = 5 2 3 + 1 P = 5 2 3 + 1 P
40 2 20 39 mp2an P = 5 2 3 + 1 P