| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 41prothprm.p |  |-  P = ; 4 1 | 
						
							| 2 | 1 | 41prothprmlem1 |  |-  ( ( P - 1 ) / 2 ) = ; 2 0 | 
						
							| 3 | 2 | oveq2i |  |-  ( 3 ^ ( ( P - 1 ) / 2 ) ) = ( 3 ^ ; 2 0 ) | 
						
							| 4 | 3 | oveq1i |  |-  ( ( 3 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( ( 3 ^ ; 2 0 ) mod P ) | 
						
							| 5 |  | 5cn |  |-  5 e. CC | 
						
							| 6 |  | 4cn |  |-  4 e. CC | 
						
							| 7 |  | 5t4e20 |  |-  ( 5 x. 4 ) = ; 2 0 | 
						
							| 8 | 5 6 7 | mulcomli |  |-  ( 4 x. 5 ) = ; 2 0 | 
						
							| 9 | 8 | eqcomi |  |-  ; 2 0 = ( 4 x. 5 ) | 
						
							| 10 | 9 | oveq2i |  |-  ( 3 ^ ; 2 0 ) = ( 3 ^ ( 4 x. 5 ) ) | 
						
							| 11 |  | 3cn |  |-  3 e. CC | 
						
							| 12 |  | 4nn0 |  |-  4 e. NN0 | 
						
							| 13 |  | 5nn0 |  |-  5 e. NN0 | 
						
							| 14 |  | expmul |  |-  ( ( 3 e. CC /\ 4 e. NN0 /\ 5 e. NN0 ) -> ( 3 ^ ( 4 x. 5 ) ) = ( ( 3 ^ 4 ) ^ 5 ) ) | 
						
							| 15 | 11 12 13 14 | mp3an |  |-  ( 3 ^ ( 4 x. 5 ) ) = ( ( 3 ^ 4 ) ^ 5 ) | 
						
							| 16 | 10 15 | eqtri |  |-  ( 3 ^ ; 2 0 ) = ( ( 3 ^ 4 ) ^ 5 ) | 
						
							| 17 | 16 | oveq1i |  |-  ( ( 3 ^ ; 2 0 ) mod ; 4 1 ) = ( ( ( 3 ^ 4 ) ^ 5 ) mod ; 4 1 ) | 
						
							| 18 |  | 3z |  |-  3 e. ZZ | 
						
							| 19 |  | zexpcl |  |-  ( ( 3 e. ZZ /\ 4 e. NN0 ) -> ( 3 ^ 4 ) e. ZZ ) | 
						
							| 20 | 18 12 19 | mp2an |  |-  ( 3 ^ 4 ) e. ZZ | 
						
							| 21 |  | neg1z |  |-  -u 1 e. ZZ | 
						
							| 22 | 20 21 | pm3.2i |  |-  ( ( 3 ^ 4 ) e. ZZ /\ -u 1 e. ZZ ) | 
						
							| 23 |  | 1nn |  |-  1 e. NN | 
						
							| 24 | 12 23 | decnncl |  |-  ; 4 1 e. NN | 
						
							| 25 |  | nnrp |  |-  ( ; 4 1 e. NN -> ; 4 1 e. RR+ ) | 
						
							| 26 | 24 25 | ax-mp |  |-  ; 4 1 e. RR+ | 
						
							| 27 | 13 26 | pm3.2i |  |-  ( 5 e. NN0 /\ ; 4 1 e. RR+ ) | 
						
							| 28 |  | 3exp4mod41 |  |-  ( ( 3 ^ 4 ) mod ; 4 1 ) = ( -u 1 mod ; 4 1 ) | 
						
							| 29 |  | modexp |  |-  ( ( ( ( 3 ^ 4 ) e. ZZ /\ -u 1 e. ZZ ) /\ ( 5 e. NN0 /\ ; 4 1 e. RR+ ) /\ ( ( 3 ^ 4 ) mod ; 4 1 ) = ( -u 1 mod ; 4 1 ) ) -> ( ( ( 3 ^ 4 ) ^ 5 ) mod ; 4 1 ) = ( ( -u 1 ^ 5 ) mod ; 4 1 ) ) | 
						
							| 30 | 22 27 28 29 | mp3an |  |-  ( ( ( 3 ^ 4 ) ^ 5 ) mod ; 4 1 ) = ( ( -u 1 ^ 5 ) mod ; 4 1 ) | 
						
							| 31 |  | 3p2e5 |  |-  ( 3 + 2 ) = 5 | 
						
							| 32 | 31 | eqcomi |  |-  5 = ( 3 + 2 ) | 
						
							| 33 | 32 | oveq2i |  |-  ( -u 1 ^ 5 ) = ( -u 1 ^ ( 3 + 2 ) ) | 
						
							| 34 |  | 2z |  |-  2 e. ZZ | 
						
							| 35 |  | m1expaddsub |  |-  ( ( 3 e. ZZ /\ 2 e. ZZ ) -> ( -u 1 ^ ( 3 - 2 ) ) = ( -u 1 ^ ( 3 + 2 ) ) ) | 
						
							| 36 | 18 34 35 | mp2an |  |-  ( -u 1 ^ ( 3 - 2 ) ) = ( -u 1 ^ ( 3 + 2 ) ) | 
						
							| 37 | 36 | eqcomi |  |-  ( -u 1 ^ ( 3 + 2 ) ) = ( -u 1 ^ ( 3 - 2 ) ) | 
						
							| 38 |  | 2cn |  |-  2 e. CC | 
						
							| 39 |  | ax-1cn |  |-  1 e. CC | 
						
							| 40 |  | 2p1e3 |  |-  ( 2 + 1 ) = 3 | 
						
							| 41 | 11 38 39 40 | subaddrii |  |-  ( 3 - 2 ) = 1 | 
						
							| 42 | 41 | oveq2i |  |-  ( -u 1 ^ ( 3 - 2 ) ) = ( -u 1 ^ 1 ) | 
						
							| 43 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 44 |  | exp1 |  |-  ( -u 1 e. CC -> ( -u 1 ^ 1 ) = -u 1 ) | 
						
							| 45 | 43 44 | ax-mp |  |-  ( -u 1 ^ 1 ) = -u 1 | 
						
							| 46 | 42 45 | eqtri |  |-  ( -u 1 ^ ( 3 - 2 ) ) = -u 1 | 
						
							| 47 | 33 37 46 | 3eqtri |  |-  ( -u 1 ^ 5 ) = -u 1 | 
						
							| 48 | 47 | oveq1i |  |-  ( ( -u 1 ^ 5 ) mod ; 4 1 ) = ( -u 1 mod ; 4 1 ) | 
						
							| 49 | 17 30 48 | 3eqtri |  |-  ( ( 3 ^ ; 2 0 ) mod ; 4 1 ) = ( -u 1 mod ; 4 1 ) | 
						
							| 50 | 1 | oveq2i |  |-  ( ( 3 ^ ; 2 0 ) mod P ) = ( ( 3 ^ ; 2 0 ) mod ; 4 1 ) | 
						
							| 51 | 1 | oveq2i |  |-  ( -u 1 mod P ) = ( -u 1 mod ; 4 1 ) | 
						
							| 52 | 49 50 51 | 3eqtr4i |  |-  ( ( 3 ^ ; 2 0 ) mod P ) = ( -u 1 mod P ) | 
						
							| 53 | 4 52 | eqtri |  |-  ( ( 3 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( -u 1 mod P ) |