| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2p2e4 |
|- ( 2 + 2 ) = 4 |
| 2 |
1
|
eqcomi |
|- 4 = ( 2 + 2 ) |
| 3 |
2
|
oveq2i |
|- ( 3 ^ 4 ) = ( 3 ^ ( 2 + 2 ) ) |
| 4 |
|
3cn |
|- 3 e. CC |
| 5 |
|
2nn0 |
|- 2 e. NN0 |
| 6 |
|
expadd |
|- ( ( 3 e. CC /\ 2 e. NN0 /\ 2 e. NN0 ) -> ( 3 ^ ( 2 + 2 ) ) = ( ( 3 ^ 2 ) x. ( 3 ^ 2 ) ) ) |
| 7 |
4 5 5 6
|
mp3an |
|- ( 3 ^ ( 2 + 2 ) ) = ( ( 3 ^ 2 ) x. ( 3 ^ 2 ) ) |
| 8 |
|
sq3 |
|- ( 3 ^ 2 ) = 9 |
| 9 |
8 8
|
oveq12i |
|- ( ( 3 ^ 2 ) x. ( 3 ^ 2 ) ) = ( 9 x. 9 ) |
| 10 |
|
9t9e81 |
|- ( 9 x. 9 ) = ; 8 1 |
| 11 |
9 10
|
eqtri |
|- ( ( 3 ^ 2 ) x. ( 3 ^ 2 ) ) = ; 8 1 |
| 12 |
3 7 11
|
3eqtri |
|- ( 3 ^ 4 ) = ; 8 1 |
| 13 |
12
|
oveq1i |
|- ( ( 3 ^ 4 ) mod ; 4 1 ) = ( ; 8 1 mod ; 4 1 ) |
| 14 |
|
dfdec10 |
|- ; 8 1 = ( ( ; 1 0 x. 8 ) + 1 ) |
| 15 |
|
4cn |
|- 4 e. CC |
| 16 |
|
2cn |
|- 2 e. CC |
| 17 |
|
4t2e8 |
|- ( 4 x. 2 ) = 8 |
| 18 |
15 16 17
|
mulcomli |
|- ( 2 x. 4 ) = 8 |
| 19 |
18
|
eqcomi |
|- 8 = ( 2 x. 4 ) |
| 20 |
19
|
oveq2i |
|- ( ; 1 0 x. 8 ) = ( ; 1 0 x. ( 2 x. 4 ) ) |
| 21 |
|
ax-1cn |
|- 1 e. CC |
| 22 |
16 21
|
negsubi |
|- ( 2 + -u 1 ) = ( 2 - 1 ) |
| 23 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
| 24 |
22 23
|
eqtri |
|- ( 2 + -u 1 ) = 1 |
| 25 |
24
|
eqcomi |
|- 1 = ( 2 + -u 1 ) |
| 26 |
20 25
|
oveq12i |
|- ( ( ; 1 0 x. 8 ) + 1 ) = ( ( ; 1 0 x. ( 2 x. 4 ) ) + ( 2 + -u 1 ) ) |
| 27 |
|
10nn |
|- ; 1 0 e. NN |
| 28 |
27
|
nncni |
|- ; 1 0 e. CC |
| 29 |
16 15
|
mulcli |
|- ( 2 x. 4 ) e. CC |
| 30 |
28 29
|
mulcli |
|- ( ; 1 0 x. ( 2 x. 4 ) ) e. CC |
| 31 |
|
neg1cn |
|- -u 1 e. CC |
| 32 |
30 16 31
|
addassi |
|- ( ( ( ; 1 0 x. ( 2 x. 4 ) ) + 2 ) + -u 1 ) = ( ( ; 1 0 x. ( 2 x. 4 ) ) + ( 2 + -u 1 ) ) |
| 33 |
28 15
|
mulcli |
|- ( ; 1 0 x. 4 ) e. CC |
| 34 |
16 33 21
|
adddii |
|- ( 2 x. ( ( ; 1 0 x. 4 ) + 1 ) ) = ( ( 2 x. ( ; 1 0 x. 4 ) ) + ( 2 x. 1 ) ) |
| 35 |
|
dfdec10 |
|- ; 4 1 = ( ( ; 1 0 x. 4 ) + 1 ) |
| 36 |
35
|
eqcomi |
|- ( ( ; 1 0 x. 4 ) + 1 ) = ; 4 1 |
| 37 |
36
|
oveq2i |
|- ( 2 x. ( ( ; 1 0 x. 4 ) + 1 ) ) = ( 2 x. ; 4 1 ) |
| 38 |
16 28 15
|
mul12i |
|- ( 2 x. ( ; 1 0 x. 4 ) ) = ( ; 1 0 x. ( 2 x. 4 ) ) |
| 39 |
|
2t1e2 |
|- ( 2 x. 1 ) = 2 |
| 40 |
38 39
|
oveq12i |
|- ( ( 2 x. ( ; 1 0 x. 4 ) ) + ( 2 x. 1 ) ) = ( ( ; 1 0 x. ( 2 x. 4 ) ) + 2 ) |
| 41 |
34 37 40
|
3eqtr3ri |
|- ( ( ; 1 0 x. ( 2 x. 4 ) ) + 2 ) = ( 2 x. ; 4 1 ) |
| 42 |
41
|
oveq1i |
|- ( ( ( ; 1 0 x. ( 2 x. 4 ) ) + 2 ) + -u 1 ) = ( ( 2 x. ; 4 1 ) + -u 1 ) |
| 43 |
26 32 42
|
3eqtr2i |
|- ( ( ; 1 0 x. 8 ) + 1 ) = ( ( 2 x. ; 4 1 ) + -u 1 ) |
| 44 |
14 43
|
eqtri |
|- ; 8 1 = ( ( 2 x. ; 4 1 ) + -u 1 ) |
| 45 |
44
|
oveq1i |
|- ( ; 8 1 mod ; 4 1 ) = ( ( ( 2 x. ; 4 1 ) + -u 1 ) mod ; 4 1 ) |
| 46 |
|
4nn0 |
|- 4 e. NN0 |
| 47 |
|
1nn |
|- 1 e. NN |
| 48 |
46 47
|
decnncl |
|- ; 4 1 e. NN |
| 49 |
48
|
nncni |
|- ; 4 1 e. CC |
| 50 |
16 49
|
mulcli |
|- ( 2 x. ; 4 1 ) e. CC |
| 51 |
50 31
|
addcomi |
|- ( ( 2 x. ; 4 1 ) + -u 1 ) = ( -u 1 + ( 2 x. ; 4 1 ) ) |
| 52 |
51
|
oveq1i |
|- ( ( ( 2 x. ; 4 1 ) + -u 1 ) mod ; 4 1 ) = ( ( -u 1 + ( 2 x. ; 4 1 ) ) mod ; 4 1 ) |
| 53 |
|
neg1rr |
|- -u 1 e. RR |
| 54 |
|
nnrp |
|- ( ; 4 1 e. NN -> ; 4 1 e. RR+ ) |
| 55 |
48 54
|
ax-mp |
|- ; 4 1 e. RR+ |
| 56 |
|
2z |
|- 2 e. ZZ |
| 57 |
|
modcyc |
|- ( ( -u 1 e. RR /\ ; 4 1 e. RR+ /\ 2 e. ZZ ) -> ( ( -u 1 + ( 2 x. ; 4 1 ) ) mod ; 4 1 ) = ( -u 1 mod ; 4 1 ) ) |
| 58 |
53 55 56 57
|
mp3an |
|- ( ( -u 1 + ( 2 x. ; 4 1 ) ) mod ; 4 1 ) = ( -u 1 mod ; 4 1 ) |
| 59 |
52 58
|
eqtri |
|- ( ( ( 2 x. ; 4 1 ) + -u 1 ) mod ; 4 1 ) = ( -u 1 mod ; 4 1 ) |
| 60 |
13 45 59
|
3eqtri |
|- ( ( 3 ^ 4 ) mod ; 4 1 ) = ( -u 1 mod ; 4 1 ) |