Metamath Proof Explorer


Theorem 41prothprmlem1

Description: Lemma 1 for 41prothprm . (Contributed by AV, 4-Jul-2020)

Ref Expression
Hypothesis 41prothprm.p P=41
Assertion 41prothprmlem1 P12=20

Proof

Step Hyp Ref Expression
1 41prothprm.p P=41
2 dfdec10 41=104+1
3 1 2 eqtri P=104+1
4 3 oveq1i P1=104+1-1
5 10nn 10
6 5 nncni 10
7 4cn 4
8 6 7 mulcli 104
9 pncan1 104104+1-1=104
10 8 9 ax-mp 104+1-1=104
11 4 10 eqtri P1=104
12 11 oveq1i P12=1042
13 2cn 2
14 2ne0 20
15 6 7 13 14 divassi 1042=1042
16 4d2e2 42=2
17 16 oveq2i 1042=102
18 2nn0 20
19 18 dec0u 102=20
20 17 19 eqtri 1042=20
21 15 20 eqtri 1042=20
22 12 21 eqtri P12=20