Metamath Proof Explorer


Theorem 4sqlem4a

Description: Lemma for 4sqlem4 . (Contributed by Mario Carneiro, 14-Jul-2014)

Ref Expression
Hypothesis 4sq.1 S=n|xyzwn=x2+y2+z2+w2
Assertion 4sqlem4a AiBiA2+B2S

Proof

Step Hyp Ref Expression
1 4sq.1 S=n|xyzwn=x2+y2+z2+w2
2 gzcn AiA
3 2 absvalsq2d AiA2=A2+A2
4 gzcn BiB
5 4 absvalsq2d BiB2=B2+B2
6 3 5 oveqan12d AiBiA2+B2=A2+A2+B2+B2
7 elgz AiAAA
8 7 simp2bi AiA
9 7 simp3bi AiA
10 8 9 jca AiAA
11 elgz BiBBB
12 11 simp2bi BiB
13 11 simp3bi BiB
14 12 13 jca BiBB
15 1 4sqlem3 AABBA2+A2+B2+B2S
16 10 14 15 syl2an AiBiA2+A2+B2+B2S
17 6 16 eqeltrd AiBiA2+B2S