Metamath Proof Explorer


Theorem 4t3lem

Description: Lemma for 4t3e12 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Hypotheses 4t3lem.1 A0
4t3lem.2 B0
4t3lem.3 C=B+1
4t3lem.4 AB=D
4t3lem.5 D+A=E
Assertion 4t3lem AC=E

Proof

Step Hyp Ref Expression
1 4t3lem.1 A0
2 4t3lem.2 B0
3 4t3lem.3 C=B+1
4 4t3lem.4 AB=D
5 4t3lem.5 D+A=E
6 3 oveq2i AC=AB+1
7 1 nn0cni A
8 2 nn0cni B
9 ax-1cn 1
10 7 8 9 adddii AB+1=AB+A1
11 7 mulridi A1=A
12 4 11 oveq12i AB+A1=D+A
13 10 12 eqtri AB+1=D+A
14 13 5 eqtri AB+1=E
15 6 14 eqtri AC=E