Metamath Proof Explorer


Theorem 9t11e99

Description: 9 times 11 equals 99. (Contributed by AV, 14-Jun-2021) (Revised by AV, 6-Sep-2021)

Ref Expression
Assertion 9t11e99 911=99

Proof

Step Hyp Ref Expression
1 9cn 9
2 10nn0 100
3 2 nn0cni 10
4 ax-1cn 1
5 3 4 mulcli 101
6 1 5 4 adddii 9101+1=9101+91
7 3 mulridi 101=10
8 7 oveq2i 9101=910
9 1 3 mulcomi 910=109
10 8 9 eqtri 9101=109
11 1 mulridi 91=9
12 10 11 oveq12i 9101+91=109+9
13 6 12 eqtri 9101+1=109+9
14 dfdec10 11=101+1
15 14 oveq2i 911=9101+1
16 dfdec10 99=109+9
17 13 15 16 3eqtr4i 911=99