Metamath Proof Explorer


Theorem ab0OLD

Description: Obsolete version of ab0 as of 8-Sep-2024. (Contributed by BJ, 19-Mar-2021) Avoid df-clel , ax-8 . (Revised by Gino Giotto, 30-Aug-2024) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion ab0OLD x|φ=x¬φ

Proof

Step Hyp Ref Expression
1 dfnul4 =x|
2 1 eqeq2i x|φ=x|φ=x|
3 dfcleq x|φ=x|yyx|φyx|
4 df-clab yx|φyxφ
5 sb6 yxφxx=yφ
6 4 5 bitri yx|φxx=yφ
7 df-clab yx|yx
8 sbv yx
9 7 8 bitri yx|
10 6 9 bibi12i yx|φyx|xx=yφ
11 10 albii yyx|φyx|yxx=yφ
12 nbfal ¬xx=yφxx=yφ
13 12 bicomi xx=yφ¬xx=yφ
14 13 albii yxx=yφy¬xx=yφ
15 nfna1 x¬xx=yφ
16 nfv y¬φ
17 pm2.27 x=yx=yφφ
18 17 spsd x=yxx=yφφ
19 18 equcoms y=xxx=yφφ
20 ax12v x=yφxx=yφ
21 20 equcoms y=xφxx=yφ
22 19 21 impbid y=xxx=yφφ
23 22 notbid y=x¬xx=yφ¬φ
24 15 16 23 cbvalv1 y¬xx=yφx¬φ
25 11 14 24 3bitri yyx|φyx|x¬φ
26 2 3 25 3bitri x|φ=x¬φ