Metamath Proof Explorer


Theorem ab0w

Description: The class of sets verifying a property is the empty class if and only if that property is a contradiction. Version of ab0 using implicit substitution, which requires fewer axioms. (Contributed by Gino Giotto, 3-Oct-2024)

Ref Expression
Hypothesis ab0w.1 x=yφψ
Assertion ab0w x|φ=y¬ψ

Proof

Step Hyp Ref Expression
1 ab0w.1 x=yφψ
2 dfnul4 =x|
3 2 eqeq2i x|φ=x|φ=x|
4 dfcleq x|φ=x|yyx|φyx|
5 df-clab yx|φyxφ
6 1 sbievw yxφψ
7 5 6 bitri yx|φψ
8 7 bibi1i yx|φyx|ψyx|
9 bicom ψyx|yx|ψ
10 8 9 bitri yx|φyx|yx|ψ
11 10 albii yyx|φyx|yyx|ψ
12 4 11 bitri x|φ=x|yyx|ψ
13 df-clab yx|yx
14 sbv yx
15 13 14 bitri yx|
16 15 bibi1i yx|ψψ
17 16 albii yyx|ψyψ
18 falim ψ¬ψ
19 idd ¬¬ψ¬ψ
20 18 19 bija ψ¬ψ
21 falim ψ
22 id ψψ
23 21 22 pm5.21ni ¬ψψ
24 20 23 impbii ψ¬ψ
25 24 albii yψy¬ψ
26 17 25 bitri yyx|ψy¬ψ
27 12 26 bitri x|φ=x|y¬ψ
28 3 27 bitri x|φ=y¬ψ