Metamath Proof Explorer


Theorem ab0w

Description: The class of sets verifying a property is the empty class if and only if that property is a contradiction. Version of ab0 using implicit substitution, which requires fewer axioms. (Contributed by GG, 3-Oct-2024)

Ref Expression
Hypothesis ab0w.1 x = y φ ψ
Assertion ab0w x | φ = y ¬ ψ

Proof

Step Hyp Ref Expression
1 ab0w.1 x = y φ ψ
2 dfnul4 = x |
3 2 eqeq2i x | φ = x | φ = x |
4 df-clab y x | y x
5 sbv y x
6 4 5 bitri y x |
7 6 bibi2i ψ y x | ψ
8 7 albii y ψ y x | y ψ
9 1 eqabcbw x | φ = x | y ψ y x |
10 nbfal ¬ ψ ψ
11 10 albii y ¬ ψ y ψ
12 8 9 11 3bitr4i x | φ = x | y ¬ ψ
13 3 12 bitri x | φ = y ¬ ψ