| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ab0w.1 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
|
dfnul4 |
⊢ ∅ = { 𝑥 ∣ ⊥ } |
| 3 |
2
|
eqeq2i |
⊢ ( { 𝑥 ∣ 𝜑 } = ∅ ↔ { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ ⊥ } ) |
| 4 |
|
df-clab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ ⊥ } ↔ [ 𝑦 / 𝑥 ] ⊥ ) |
| 5 |
|
sbv |
⊢ ( [ 𝑦 / 𝑥 ] ⊥ ↔ ⊥ ) |
| 6 |
4 5
|
bitri |
⊢ ( 𝑦 ∈ { 𝑥 ∣ ⊥ } ↔ ⊥ ) |
| 7 |
6
|
bibi2i |
⊢ ( ( 𝜓 ↔ 𝑦 ∈ { 𝑥 ∣ ⊥ } ) ↔ ( 𝜓 ↔ ⊥ ) ) |
| 8 |
7
|
albii |
⊢ ( ∀ 𝑦 ( 𝜓 ↔ 𝑦 ∈ { 𝑥 ∣ ⊥ } ) ↔ ∀ 𝑦 ( 𝜓 ↔ ⊥ ) ) |
| 9 |
1
|
eqabcbw |
⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ ⊥ } ↔ ∀ 𝑦 ( 𝜓 ↔ 𝑦 ∈ { 𝑥 ∣ ⊥ } ) ) |
| 10 |
|
nbfal |
⊢ ( ¬ 𝜓 ↔ ( 𝜓 ↔ ⊥ ) ) |
| 11 |
10
|
albii |
⊢ ( ∀ 𝑦 ¬ 𝜓 ↔ ∀ 𝑦 ( 𝜓 ↔ ⊥ ) ) |
| 12 |
8 9 11
|
3bitr4i |
⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ ⊥ } ↔ ∀ 𝑦 ¬ 𝜓 ) |
| 13 |
3 12
|
bitri |
⊢ ( { 𝑥 ∣ 𝜑 } = ∅ ↔ ∀ 𝑦 ¬ 𝜓 ) |