Metamath Proof Explorer


Theorem ab0w

Description: The class of sets verifying a property is the empty class if and only if that property is a contradiction. Version of ab0 using implicit substitution, which requires fewer axioms. (Contributed by GG, 3-Oct-2024)

Ref Expression
Hypothesis ab0w.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion ab0w ( { 𝑥𝜑 } = ∅ ↔ ∀ 𝑦 ¬ 𝜓 )

Proof

Step Hyp Ref Expression
1 ab0w.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
2 dfnul4 ∅ = { 𝑥 ∣ ⊥ }
3 2 eqeq2i ( { 𝑥𝜑 } = ∅ ↔ { 𝑥𝜑 } = { 𝑥 ∣ ⊥ } )
4 df-clab ( 𝑦 ∈ { 𝑥 ∣ ⊥ } ↔ [ 𝑦 / 𝑥 ] ⊥ )
5 sbv ( [ 𝑦 / 𝑥 ] ⊥ ↔ ⊥ )
6 4 5 bitri ( 𝑦 ∈ { 𝑥 ∣ ⊥ } ↔ ⊥ )
7 6 bibi2i ( ( 𝜓𝑦 ∈ { 𝑥 ∣ ⊥ } ) ↔ ( 𝜓 ↔ ⊥ ) )
8 7 albii ( ∀ 𝑦 ( 𝜓𝑦 ∈ { 𝑥 ∣ ⊥ } ) ↔ ∀ 𝑦 ( 𝜓 ↔ ⊥ ) )
9 1 eqabcbw ( { 𝑥𝜑 } = { 𝑥 ∣ ⊥ } ↔ ∀ 𝑦 ( 𝜓𝑦 ∈ { 𝑥 ∣ ⊥ } ) )
10 nbfal ( ¬ 𝜓 ↔ ( 𝜓 ↔ ⊥ ) )
11 10 albii ( ∀ 𝑦 ¬ 𝜓 ↔ ∀ 𝑦 ( 𝜓 ↔ ⊥ ) )
12 8 9 11 3bitr4i ( { 𝑥𝜑 } = { 𝑥 ∣ ⊥ } ↔ ∀ 𝑦 ¬ 𝜓 )
13 3 12 bitri ( { 𝑥𝜑 } = ∅ ↔ ∀ 𝑦 ¬ 𝜓 )