Metamath Proof Explorer


Theorem abexex

Description: A condition where a class abstraction continues to exist after its wff is existentially quantified. (Contributed by NM, 4-Mar-2007)

Ref Expression
Hypotheses abexex.1 AV
abexex.2 φxA
abexex.3 y|φV
Assertion abexex y|xφV

Proof

Step Hyp Ref Expression
1 abexex.1 AV
2 abexex.2 φxA
3 abexex.3 y|φV
4 df-rex xAφxxAφ
5 2 pm4.71ri φxAφ
6 5 exbii xφxxAφ
7 4 6 bitr4i xAφxφ
8 7 abbii y|xAφ=y|xφ
9 1 3 abrexex2 y|xAφV
10 8 9 eqeltrri y|xφV