Description: A condition where a class abstraction continues to exist after its wff is existentially quantified. (Contributed by NM, 4-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abexex.1 | |- A e. _V |
|
| abexex.2 | |- ( ph -> x e. A ) |
||
| abexex.3 | |- { y | ph } e. _V |
||
| Assertion | abexex | |- { y | E. x ph } e. _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abexex.1 | |- A e. _V |
|
| 2 | abexex.2 | |- ( ph -> x e. A ) |
|
| 3 | abexex.3 | |- { y | ph } e. _V |
|
| 4 | df-rex | |- ( E. x e. A ph <-> E. x ( x e. A /\ ph ) ) |
|
| 5 | 2 | pm4.71ri | |- ( ph <-> ( x e. A /\ ph ) ) |
| 6 | 5 | exbii | |- ( E. x ph <-> E. x ( x e. A /\ ph ) ) |
| 7 | 4 6 | bitr4i | |- ( E. x e. A ph <-> E. x ph ) |
| 8 | 7 | abbii | |- { y | E. x e. A ph } = { y | E. x ph } |
| 9 | 1 3 | abrexex2 | |- { y | E. x e. A ph } e. _V |
| 10 | 8 9 | eqeltrri | |- { y | E. x ph } e. _V |