Metamath Proof Explorer


Theorem abexex

Description: A condition where a class abstraction continues to exist after its wff is existentially quantified. (Contributed by NM, 4-Mar-2007)

Ref Expression
Hypotheses abexex.1 𝐴 ∈ V
abexex.2 ( 𝜑𝑥𝐴 )
abexex.3 { 𝑦𝜑 } ∈ V
Assertion abexex { 𝑦 ∣ ∃ 𝑥 𝜑 } ∈ V

Proof

Step Hyp Ref Expression
1 abexex.1 𝐴 ∈ V
2 abexex.2 ( 𝜑𝑥𝐴 )
3 abexex.3 { 𝑦𝜑 } ∈ V
4 df-rex ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥𝐴𝜑 ) )
5 2 pm4.71ri ( 𝜑 ↔ ( 𝑥𝐴𝜑 ) )
6 5 exbii ( ∃ 𝑥 𝜑 ↔ ∃ 𝑥 ( 𝑥𝐴𝜑 ) )
7 4 6 bitr4i ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥 𝜑 )
8 7 abbii { 𝑦 ∣ ∃ 𝑥𝐴 𝜑 } = { 𝑦 ∣ ∃ 𝑥 𝜑 }
9 1 3 abrexex2 { 𝑦 ∣ ∃ 𝑥𝐴 𝜑 } ∈ V
10 8 9 eqeltrri { 𝑦 ∣ ∃ 𝑥 𝜑 } ∈ V