Metamath Proof Explorer


Theorem ablpropd

Description: If two structures have the same group components (properties), one is an Abelian group iff the other one is. (Contributed by NM, 6-Dec-2014)

Ref Expression
Hypotheses ablpropd.1 φB=BaseK
ablpropd.2 φB=BaseL
ablpropd.3 φxByBx+Ky=x+Ly
Assertion ablpropd φKAbelLAbel

Proof

Step Hyp Ref Expression
1 ablpropd.1 φB=BaseK
2 ablpropd.2 φB=BaseL
3 ablpropd.3 φxByBx+Ky=x+Ly
4 1 2 3 grppropd φKGrpLGrp
5 1 2 3 cmnpropd φKCMndLCMnd
6 4 5 anbi12d φKGrpKCMndLGrpLCMnd
7 isabl KAbelKGrpKCMnd
8 isabl LAbelLGrpLCMnd
9 6 7 8 3bitr4g φKAbelLAbel