| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ablpropd.1 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) |
| 2 |
|
ablpropd.2 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) |
| 3 |
|
ablpropd.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
| 4 |
1 2 3
|
grppropd |
⊢ ( 𝜑 → ( 𝐾 ∈ Grp ↔ 𝐿 ∈ Grp ) ) |
| 5 |
1 2 3
|
cmnpropd |
⊢ ( 𝜑 → ( 𝐾 ∈ CMnd ↔ 𝐿 ∈ CMnd ) ) |
| 6 |
4 5
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝐾 ∈ Grp ∧ 𝐾 ∈ CMnd ) ↔ ( 𝐿 ∈ Grp ∧ 𝐿 ∈ CMnd ) ) ) |
| 7 |
|
isabl |
⊢ ( 𝐾 ∈ Abel ↔ ( 𝐾 ∈ Grp ∧ 𝐾 ∈ CMnd ) ) |
| 8 |
|
isabl |
⊢ ( 𝐿 ∈ Abel ↔ ( 𝐿 ∈ Grp ∧ 𝐿 ∈ CMnd ) ) |
| 9 |
6 7 8
|
3bitr4g |
⊢ ( 𝜑 → ( 𝐾 ∈ Abel ↔ 𝐿 ∈ Abel ) ) |